-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG.py
112 lines (92 loc) · 3.43 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gym
import torch
import os
from copy import deepcopy
from memory import ReplayMemory
from qnets import QNetContinuous
from offline_policies import ContinuousPolicy
from utils import OUNoise, soft_update
from tqdm import tqdm
import numpy as np
# if gpu is to be used
if torch.cuda.is_available():
device = torch.device("cuda")
torch.set_default_tensor_type(torch.cuda.FloatTensor)
else:
device = torch.device("cpu")
torch.set_default_tensor_type(torch.FloatTensor)
#environment
env = gym.make('MountainCarContinuous-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
#parameters
gamma = 0.98 # discount factor
tau = 0.05 # soft update rate
lr_policy = 1e-3
lr_critic = 1e-3
memory_limit = 100000
#Networks initialisation
actor = ContinuousPolicy(state_dim, action_dim, lr_policy, std=None).to(device)
critic = QNetContinuous(state_dim, action_dim, lr_critic).to(device)
#target networks
target_actor = deepcopy(actor)
target_critic = deepcopy(critic)
#Replay Buffer
memory = ReplayMemory(state_dim, action_dim, memory_limit)
#Noise process
noise = OUNoise(mu=np.zeros(action_dim))
def DDPG_Step(batch_size=64):
'''
Single DDPG train step
'''
batch = memory.sample(batch_size)
#---------------------critic training----------------------------------
with torch.no_grad():
next_actions = target_actor(batch.next_states)
next_critic_values = target_critic(batch.next_states, next_actions)
expected_critic_values = batch.rewards + gamma * next_critic_values * (1 - batch.dones)
critic.train(batch.states, batch.actions, expected_critic_values)
#---------------------actor training----------------------------------
critic.requires_grad(False)
actions = actor(batch.states)
actor_loss = -critic(batch.states, actions).mean()
actor.train(actor_loss)
critic.requires_grad(True)
#----------------soft update target networks---------------------------
soft_update(target_actor, actor, tau)
soft_update(target_critic, critic, tau)
def save(path='checkpoints'):
'''Save model checkpoints'''
if not os.path.exists(path): os.makedirs(path)
torch.save({
'actor_state_dict': actor.state_dict(),
'critic_state_dict': critic.state_dict(),
'target_actor_state_dict': target_actor.state_dict(),
'target_critic_state_dict': target_critic.state_dict(),
}, os.path.join(path, 'ddpg_checkpoint.pth'))
def DDPG_Train(iters=1000, batch_size=64, max_ep_len=1000,
update_freq=1, eps=1, save_freq=1000):
'''
Train actor and critic networks
'''
for _ in tqdm(range(iters)):
state, _ = env.reset()
done = False
steps = 0
while not done and steps < max_ep_len:
#Collect transition
action = actor.choose_action(state) + noise()
next_state, reward, done, info, _ = env.step(action)
#Add transition to memory
memory.add_transition(state, action, next_state, reward, done)
#if it's time to train
if steps%update_freq == 0 and len(memory) > batch_size:
for e in range(eps):
DDPG_Step(batch_size)
#if it's time to save
if steps%save_freq == 0:
save()
state = next_state
steps += 1
save()
DDPG_Train()