-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_prune_finetune.py
219 lines (185 loc) · 8.2 KB
/
train_prune_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
#!-*- coding=utf-8 -*-
@author: BADBADBADBADBOY
@contact: [email protected]
@software: PyCharm Community Edition
@file: train_prune_finetune.py
@time: 2020/6/20 10:59
"""
import sys
sys.path.append('/home/aistudio/external-libraries')
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import shutil
import cv2
from torch.autograd import Variable
from torch.utils import data
import os
from dataset.dataloader import DataLoader
from utils.metrics import runningScore, cal_kernel_score, cal_text_score
import models
from utils.logger import Logger
from utils.misc import AverageMeter
from loss.loss import PseLoss
import time
from get_prune_model import load_prune_model
# from pse import pse
def train(train_loader, model, criterion, optimizer):
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
running_metric_text = runningScore(2)
running_metric_kernel = runningScore(2)
end = time.time()
for batch_idx, (imgs, gt_texts, gt_kernels, training_masks) in enumerate(train_loader):
data_time.update(time.time() - end)
imgs = Variable(imgs.cuda())
gt_texts = Variable(gt_texts.cuda())
gt_kernels = Variable(gt_kernels.cuda())
training_masks = Variable(training_masks.cuda())
outputs = model(imgs)
texts = outputs[:, 0, :, :]
kernels = outputs[:, 1:, :, :]
loss = criterion(texts, gt_texts, kernels, gt_kernels, training_masks)
losses.update(loss.item(), imgs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
score_text = cal_text_score(texts, gt_texts, training_masks, running_metric_text)
score_kernel = cal_kernel_score(kernels, gt_kernels, gt_texts, training_masks, running_metric_kernel)
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % 20 == 0:
output_log = '({batch}/{size}) Batch: {bt:.3f}s | TOTAL: {total:.0f}min | ETA: {eta:.0f}min | Loss: {loss:.4f} | Acc_t: {acc: .4f} | IOU_t: {iou_t: .4f} | IOU_k: {iou_k: .4f}'.format(
batch=batch_idx + 1,
size=len(train_loader),
bt=batch_time.avg,
total=batch_time.avg * batch_idx / 60.0,
eta=batch_time.avg * (len(train_loader) - batch_idx) / 60.0,
loss=losses.avg,
acc=score_text['Mean Acc'],
iou_t=score_text['Mean IoU'],
iou_k=score_kernel['Mean IoU'])
print(output_log)
sys.stdout.flush()
return (
losses.avg, score_text['Mean Acc'], score_kernel['Mean Acc'], score_text['Mean IoU'], score_kernel['Mean IoU'])
def adjust_learning_rate(args, optimizer, epoch):
global state
if epoch in args.schedule:
args.lr = args.lr * 0.1
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
# def lr_poly(base_lr, iter, max_iter, power):
# return base_lr*((1-float(iter)/max_iter)**(power))
# def adjust_learning_rate(base_lr, optimizer, i_iter):
# args = self.args
# lr = self.lr_poly(base_lr, i_iter, args.num_steps, args.power)
# optimizer.param_groups[0]['lr'] = lr
# return lr
def save_checkpoint(state, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
def set_seed(seed):
import numpy as np
import random
import torch
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
GLOBAL_WORKER_ID = None
GLOBAL_SEED = 1000
def worker_init_fn(worker_id):
global GLOBAL_WORKER_ID
GLOBAL_WORKER_ID = worker_id
set_seed(GLOBAL_SEED + worker_id)
def main(args):
if args.checkpoint == '':
args.checkpoint = "checkpoints/finetune_%s_bs_%d_ep_%d" % (args.backbone, args.batch_size, args.n_epoch)
print('checkpoint path: %s' % args.checkpoint)
print('init lr: %.8f' % args.lr)
print('schedule: ', args.schedule)
sys.stdout.flush()
start_epoch = 0
if not os.path.isdir(args.checkpoint):
os.makedirs(args.checkpoint)
data_loader = DataLoader(is_transform=True, kernel_num=args.kernel_num, min_scale=args.min_scale)
train_loader = torch.utils.data.DataLoader(
data_loader,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
worker_init_fn=worker_init_fn,
drop_last=True,
pin_memory=True)
model = models.Psenet(args.backbone).cuda()
model = load_prune_model(model,args.prune_model)
criterion = PseLoss(kernel_num=args.kernel_num, text_loss_ratio=0.7).cuda()
model = torch.nn.DataParallel(model)
if hasattr(model.module, 'optimizer'):
optimizer = model.module.optimizer
else:
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.99, weight_decay=5e-4)
if args.resume:
print('Resuming from checkpoint.')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=args.backbone, resume=True)
else:
print('Training from scratch.')
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=args.backbone)
logger.set_names(['Learning Rate', 'Train Loss', 'Train Acc.', 'Train IOU.', 'recall', 'precision', 'f1'])
for epoch in range(start_epoch, args.n_epoch):
adjust_learning_rate(args, optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.n_epoch, optimizer.param_groups[0]['lr']))
train_loss, train_te_acc, train_ke_acc, train_te_iou, train_ke_iou = train(train_loader, model, criterion,optimizer)
# if (epoch < 200):
recall, precision, f1 = 0, 0, 0
# else:
# recall, precision, f1 = test(model)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'lr': args.lr,
'optimizer': optimizer.state_dict(),
}, checkpoint=args.checkpoint)
logger.append([optimizer.param_groups[0]['lr'], train_loss, train_te_acc, train_te_iou, recall, precision, f1])
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--backbone', nargs='?', type=str, default='resnet')
parser.add_argument('--img_size', nargs='?', type=int, default=640,
help='Height of the input image')
parser.add_argument('--n_epoch', nargs='?', type=int, default=120,
help='# of the epochs')
parser.add_argument('--schedule', type=int, nargs='+', default=[40, 80, 100],
help='Decrease learning rate at these epochs.')
parser.add_argument('--batch_size', nargs='?', type=int, default=8,
help='Batch Size')
parser.add_argument('--lr', nargs='?', type=float, default=1e-4,
help='Learning Rate')
parser.add_argument('--sr_lr', nargs='?', type=float, default=None,
help='sr Rate')
parser.add_argument('--num_workers', nargs='?', type=int, default=0,
help='num workers to train')
parser.add_argument('--kernel_num', nargs='?', type=int, default=7,
help='kernel_num to train')
parser.add_argument('--min_scale', nargs='?', type=float, default=0.4,
help='min_scale to train')
parser.add_argument('--resume', nargs='?', type=str,default='',
help='Path to previous saved model to restart from')
parser.add_argument('--prune_model', default='./pruned/checkpoints/pruned_dict.pth.tar', type=str, metavar='PATH',
help='pruned model path')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='checkpoint path')
args = parser.parse_args()
main(args)