-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
executable file
·171 lines (144 loc) · 5.75 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import os
import numpy as np
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from torch.optim.lr_scheduler import ReduceLROnPlateau
import PIL.Image as Image
import matplotlib.pyplot as plt
from tqdm import tqdm
import torchvision
from resnet import resnet18,resnet50,ResNet9
import random
SEED =1
random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
model = resnet18(100)
model = ResNet9(3, 100)
# state_dict = torch.load('../../data/cifar100/IG/resnet-9.pth',map_location='cpu')
# model.load_state_dict(state_dict['net'])
model.to(device)
class RandomPixelRemoval:
def __init__(self, removal_fraction=0.1):
self.removal_fraction = removal_fraction
def __call__(self, tensor):
if not isinstance(tensor, torch.Tensor):
raise TypeError(f"Expected input type torch.Tensor, but got {type(tensor)}")
num_pixels = tensor.size(1) * tensor.size(2)
num_pixels_to_remove = int(self.removal_fraction * num_pixels)
mask = torch.ones_like(tensor)
indices = np.random.choice(num_pixels, num_pixels_to_remove, replace=False)
mask.view(-1)[indices] = 0
tensor = tensor * mask
return tensor
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
# RandomPixelRemoval(0.1) # for finetune
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
trainset = torchvision.datasets.CIFAR100(root='../../data', train=True, download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, pin_memory=True, num_workers=8)
test_dataset = torchvision.datasets.CIFAR100(root='../../data', train=False, download=True, transform=transform_test)
val_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=32, shuffle=False, pin_memory=True, num_workers=2)
# valid
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in tqdm(val_loader):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
# loss = criterion(outputs, labels)
# val_loss += loss.item()
_, predicted = torch.max(outputs, 1) #
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_loss /= len(val_loader)
val_accuracy = 100 * correct / total
print(f"Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.2f}%")
print('Number of correct predictions:', correct)
print('Total number of predictions:', total)
def train():
num_epochs = 100
global val_accuracy
best_val_accuracy = val_accuracy
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4,
weight_decay=1e-4)
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, labels in tqdm(train_loader):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(train_loader)}")
# valid
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in tqdm(train_loader):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1) #
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_loss /= len(val_loader)
val_accuracy = 100 * correct / total
print(f"train Accuracy: {val_accuracy:.2f}%")
print('Number of correct predictions:', correct)
print('Total number of predictions:', total)
# valid
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in tqdm(val_loader):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_loss /= len(val_loader)
val_accuracy = 100 * correct / total
print(f"Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.2f}%")
print('Number of correct predictions:', correct)
print('Total number of predictions:', total)
if val_accuracy > best_val_accuracy: #
best_val_accuracy = val_accuracy
trigger_times = 0
dicts = {'net': model.state_dict(),
'acc': val_accuracy}
# torch.save(dicts, '../../data/cifar100/IG/resnet-9-finetune.pth')
torch.save(dicts, '../../data/cifar100/IG/resnet-9.pth')
if __name__ == "__main__":
train()