-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMain.py
267 lines (225 loc) · 8.81 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import array
import random
import matplotlib.pyplot as plot
import numpy as np
import math
import time
import csv
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
test = True # test or train? change this
scale = 100
MIN_VALUE = 0
MAX_VALUE = 5 # of data
MIN_STRATEGY = 0.5
MAX_STRATEGY = 3
numOfClusters = 10 # m
numOfClasses = 1 # for regression = 1
dimension = 3 # d
numOfData = 2000 # L
# this is the number of training data in train mode
IND_SIZE = numOfClusters * (dimension + 1)
# radial of cluster 1, dim1 of cluster1, dim 2 of cluster 1, radial of cluster 1, dim1 of cluster2,...
def initialize():
global data, labels, gMatrix, wMatrix, guessedY, classificationOutput, colors, numOfAllData
data = np.random.rand(numOfData, dimension)
labels = np.zeros((numOfData, numOfClasses))
gMatrix = np.random.rand(numOfData, numOfClusters)
wMatrix = np.random.rand(numOfClusters, numOfClasses) # m * c
guessedY = np.random.rand(numOfData, numOfClasses)
classificationOutput = np.zeros((numOfData,1))
colors = ['red', 'pink', 'yellow', 'magenta', 'blue', 'black', 'green'] # to the num of classes
if numOfClasses == 1 and test is False:
numOfAllData = input("Enter the numOfAllData : ")
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", array.array, typecode="d", fitness=creator.FitnessMin, strategy=None)
creator.create("Strategy", array.array, typecode="d")
# Individual generator
def generateES(icls, scls, size, imin, imax, smin, smax):
ind = icls(random.uniform(imin, imax) for _ in range(IND_SIZE))
# gammas and their clusters in each chromosome
ind.strategy = scls(random.uniform(smin, smax) for _ in range(IND_SIZE))
return ind
def checkStrategy(minstrategy):
def decorator(func):
def wrappper(*args, **kargs):
children = func(*args, **kargs)
for child in children:
for i, s in enumerate(child.strategy):
if s < minstrategy:
child.strategy[i] = minstrategy
return children
return wrappper
return decorator
def fillData():
global labels, data
datax = []
with open('regdata2000.csv') as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
rowNum = 0
for row in readCSV:
datax.append(list(map(float, row)))
rowNum += 1
datax = np.array(datax)
tempY = datax[:, datax.shape[1] - 1]
tempY = tempY/scale
tempX = datax[:, :datax.shape[1] - 1]
tempX = tempX/scale
# interval = 1 # when classification
interval = int(numOfAllData) / (numOfData + 1) # when regression and train #TODO numOfTrainData < numOfData
classes = []
for i in range(0, numOfData):
for j in range(0, dimension): # fill data (x)
data[i][j] = tempX[int(i * interval)][j]
if numOfClasses == 1:
labels[i][0] = tempY[int(i * interval)] # TODO
else: # fill labels(y) = numOfData * numOfClasses
for j in range(0, numOfClasses):
if not classes.__contains__(tempY[int(i * interval)]):
classes.append(tempY[int(i * interval)])
if j == classes.index(tempY[int(i * interval)]):
labels[i][j] = 1
else:
labels[i][j] = 0
#print(labels)
# print(data)
def fillG(individual):
for i in range(0, numOfData):
for j in range(0, numOfClusters):
gamma = 0
for d in range(0, dimension):
gamma += (data[i][d] - individual[d + 1 + j * (dimension + 1)])**2
gMatrix[i][j] = math.exp(-gamma * individual[j * (dimension + 1)] / scale)
def fillW():
global wMatrix
mul = np.matmul(gMatrix.transpose(), gMatrix)
mul = np.linalg.inv(mul)
mul = np.matmul(mul, gMatrix.transpose())
wMatrix = np.matmul(mul, labels)
def calculateCError(): # when classification
error = 0
for i in range(0, numOfData):
if labels[i][int(classificationOutput[i])] == 0:
error += 1
return 100 * error / numOfData
def calculateError(): # when regression
error = 0
for i in range(0, numOfData):
for j in range(0, numOfClasses):
error += (guessedY[i][j] - labels[i][j]) ** 2
return error / 2
def calculateFitness(individual):
try:
fillG(individual)
global guessedY
guessedY = np.matmul(gMatrix, wMatrix)
error = calculateError()
fillW()
except:
return math.inf,
if math.isnan(error):
return math.inf,
return error,
##################################################################################### ES algorithm
toolbox = base.Toolbox()
toolbox.register("individual", generateES, creator.Individual, creator.Strategy,
IND_SIZE, MIN_VALUE, MAX_VALUE, MIN_STRATEGY, MAX_STRATEGY)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxESBlend, alpha=0.1)
toolbox.register("mutate", tools.mutESLogNormal, c=1.0, indpb=0.03)
toolbox.register("select", tools.selBest)
toolbox.register("evaluate", calculateFitness)
toolbox.decorate("mate", checkStrategy(MIN_STRATEGY))
toolbox.decorate("mutate", checkStrategy(MIN_STRATEGY))
def saveLearned(path, matrix, row, col):
f = open(path, 'w+')
if f.mode == 'w+':
for i in range(0, row):
for j in range(0, col):
f.write("%f " % matrix[i][j])
f.write("\n")
f.close()
def loadLearned(path, matrix):
sample = 0
f = open(path, 'r')
if f.mode == 'r':
lines = f.readlines()
for line in lines:
line = line[:-2]
splits = line.split(' ')
for i in range(0, len(splits)):
matrix[sample][i] = float(splits[i])
sample += 1
f.close()
return matrix
def main():
global guessedY, chosenChromosome
random.seed()
MU, LAMBDA = 10, 100
pop = toolbox.population(n=MU)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
pop, logbook = algorithms.eaMuCommaLambda(pop, toolbox, mu=MU, lambda_=LAMBDA,
cxpb=0.6, mutpb=0.3, ngen=10, stats=stats, halloffame=hof)
chosenChromosome = pop[0] # we have the best chromosome in final pop
fillG(pop[0])
guessedY = np.matmul(gMatrix, wMatrix)
saveLearned("current_generation.txt", pop, MU, IND_SIZE)
saveLearned("current_weights.txt", wMatrix, numOfClusters, numOfClasses)
return pop, logbook, hof
chosenChromosome = []
def testF():
global wMatrix, guessedY, chosenChromosome
MU, LAMBDA = 10, 100
pop = toolbox.population(n=MU)
pop = loadLearned("current_generation.txt", pop)
wMatrix = loadLearned("current_weights.txt", wMatrix)
chosenChromosome = pop[0] # converged chromosome
fillG(pop[0])
guessedY = np.matmul(gMatrix, wMatrix)
def plotting():
if numOfClasses == 1:
for i in range(0, numOfData):
plot.scatter(i, labels[i][0], color='green')
plot.scatter(i, guessedY[i][0], color='red')
print('Error is:', calculateError())
plot.show()
elif numOfClasses > 1 and dimension == 2:
for i in range(0, numOfData):
maxIndex = 0
for j in range(0, numOfClasses):
if guessedY[i][j] > guessedY[i][maxIndex]:
maxIndex = j
classificationOutput[i] = maxIndex
if labels[i][int(classificationOutput[i])] == 0:
plot.scatter(data[i][0], data[i][1], color='orange') # wrong classes
else:
plot.scatter(data[i][0], data[i][1], color=colors[int(classificationOutput[i])]) # other classes
for i in range(0, numOfClusters):
plot.scatter(chosenChromosome[i * (dimension + 1) + 1]/scale,
chosenChromosome[i * (dimension + 1) + 2]/scale,
color='green')
circle = plot.Circle((chosenChromosome[i * (dimension + 1) + 1] / scale,
chosenChromosome[i * (dimension + 1) + 2]/scale), 1/math.sqrt(scale * math.fabs(chosenChromosome[i * (dimension + 1)])),edgecolor='black', facecolor='none')
aaa = plot.gca()
aaa.add_patch(circle)
# plot.axis('scaled')
print('Error is:', calculateCError(), '%')
print('َAccuracy is:', 100 - calculateCError(), '%')
plot.show()
if __name__ == "__main__":
initialize()
fillData()
start = time.time()
if not test:
main()
else:
testF()
print('time taken =', str(time.time() - start))
plotting()