-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodel.py
executable file
·338 lines (276 loc) · 11.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch.nn as nn
import torch
from transformers import ViTImageProcessor, ViTForImageClassification, ViTConfig
from timm.models.layers import trunc_normal_
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
import torch.nn.functional as F
from einops import repeat
import lightning as L
from utils import pad, unpad, silog
from optimizer import get_optimizer
from metrics import compute_metrics
from utils import eigen_crop, garg_crop, custom_crop, no_crop
NUM_DECONV = 3
NUM_FILTERS = [32, 32, 32]
DECONV_KERNELS = [2, 2, 2]
VIT_MODEL = 'google/vit-base-patch16-224'
def pad_to_make_square(x):
y = 255*((x+1)/2)
y = torch.permute(y, (0,2,3,1))
bs, _, h, w = x.shape
if w>h:
patch = torch.zeros(bs, w-h, w, 3).to(x.device)
y = torch.cat([y, patch], axis=1)
else:
patch = torch.zeros(bs, h, h-w, 3).to(x.device)
y = torch.cat([y, patch], axis=2)
return y.to(torch.int)
class EmbeddingAdapter(nn.Module):
def __init__(self, emb_dim=768):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(emb_dim, emb_dim),
nn.GELU(),
nn.Linear(emb_dim, emb_dim)
)
def forward(self, texts, gamma):
emb_transformed = self.fc(texts)
texts = texts + gamma * emb_transformed
texts = repeat(texts, 'n c -> n b c', b=1)
return texts
class EcoDepthEncoder(nn.Module):
def __init__(
self,
out_dim=1024,
ldm_prior=[320, 640, 1280+1280],
sd_path=None,
emb_dim=768,
args=None,
train_from_scratch=False,
):
super().__init__()
self.args = args
self.layer1 = nn.Sequential(
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
nn.GroupNorm(16, ldm_prior[0]),
nn.ReLU(),
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
)
self.layer2 = nn.Sequential(
nn.Conv2d(ldm_prior[1], ldm_prior[1], 3, stride=2, padding=1),
)
self.out_layer = nn.Sequential(
nn.Conv2d(sum(ldm_prior), out_dim, 1),
nn.GroupNorm(16, out_dim),
nn.ReLU(),
)
if train_from_scratch:
self.apply(self._init_weights)
self.cide_module = CIDE(args, emb_dim, train_from_scratch)
self.config = OmegaConf.load('../v1-inference.yaml')
unet_config = self.config.model.params.unet_config
first_stage_config = self.config.model.params.first_stage_config
if train_from_scratch:
if sd_path is None:
sd_path = '../../checkpoints/v1-5-pruned-emaonly.ckpt'
# unet_config.params.ckpt_path = sd_path
self.unet = instantiate_from_config(unet_config)
self.encoder_vq = instantiate_from_config(first_stage_config)
del self.encoder_vq.decoder
del self.unet.out
for param in self.encoder_vq.parameters():
param.requires_grad = False
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def forward(self, x):
with torch.no_grad():
# convert the input image to latent space and scale.
latents = self.encoder_vq.encode(x).mode().detach() * self.config.model.params.scale_factor
conditioning_scene_embedding = self.cide_module(x)
t = torch.ones((x.shape[0],), device=x.device).long()
outs = self.unet(latents, t, context=conditioning_scene_embedding)
feats = [outs[0], outs[1], torch.cat([outs[2], F.interpolate(outs[3], scale_factor=2)], dim=1)]
x = torch.cat([self.layer1(feats[0]), self.layer2(feats[1]), feats[2]], dim=1)
return self.out_layer(x)
class CIDE(nn.Module):
def __init__(self, args, emb_dim, train_from_scratch):
super().__init__()
self.args = args
self.vit_processor = ViTImageProcessor.from_pretrained(VIT_MODEL, resume_download=True)
if train_from_scratch:
vit_config = ViTConfig(num_labels=1000)
self.vit_model = ViTForImageClassification(vit_config)
else:
self.vit_model = ViTForImageClassification.from_pretrained(VIT_MODEL, resume_download=True)
for param in self.vit_model.parameters():
param.requires_grad = False
self.fc = nn.Sequential(
nn.Linear(1000, 400),
nn.GELU(),
nn.Linear(400, args.no_of_classes)
)
self.dim = emb_dim
self.m = nn.Softmax(dim=1)
self.embeddings = nn.Parameter(torch.randn(self.args.no_of_classes, self.dim))
self.embedding_adapter = EmbeddingAdapter(emb_dim=self.dim)
self.gamma = nn.Parameter(torch.ones(self.dim) * 1e-4)
def forward(self, x):
y = pad_to_make_square(x)
# use torch.no_grad() to prevent gradient flow through the ViT since it is kept frozen
with torch.no_grad():
inputs = self.vit_processor(images=y, return_tensors="pt").to(x.device)
vit_outputs = self.vit_model(**inputs)
vit_logits = vit_outputs.logits
class_probs = self.fc(vit_logits)
class_probs = self.m(class_probs)
class_embeddings = class_probs @ self.embeddings
conditioning_scene_embedding = self.embedding_adapter(class_embeddings, self.gamma)
return conditioning_scene_embedding
class EcoDepth(L.LightningModule):
def __init__(self, args):
super().__init__()
self.max_depth = args.max_depth
self.args = args
embed_dim = 192
channels_in = embed_dim * 8
channels_out = embed_dim
self.encoder = EcoDepthEncoder(out_dim=channels_in, args = args, train_from_scratch=args.train_from_scratch)
self.decoder = Decoder(channels_in, channels_out, args)
if args.eval_crop == "eigen":
self.eval_crop = eigen_crop
elif args.eval_crop == "garg":
self.eval_crop = garg_crop
elif args.eval_crop == "custom":
self.eval_crop = custom_crop
else:
self.eval_crop = no_crop
# Only support finetuning for now
assert not args.train_from_scratch
if args.train_from_scratch:
self.decoder.init_weights()
self.last_layer_depth = nn.Sequential(
nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1))
for m in self.last_layer_depth.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.001)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
# x must be a pytorch tensor of shape (bs, 3, h, w)
# and the each value ranges between [0, 1]
_, _, h, _ = x.shape
x = x*2.0 - 1.0 # normalize to [-1, 1]
x, padding = pad(x, 64)
conv_feats = self.encoder(x)
out = self.decoder([conv_feats])
out = unpad(out, padding)
out_depth = self.last_layer_depth(out)
pred = torch.sigmoid(out_depth) * self.max_depth
# pred is a pt of shape (bs, 1, h, w)
# where each value ranges between [0, self.max_depth]
return pred
def training_step(self, batch, batch_idx):
image, depth = batch["image"], batch["depth"]
pred = self(image)
loss = silog(pred, depth)
return loss
def _shared_eval_step(self, batch, batch_idx, prefix):
image, depth = batch["image"], batch["depth"]
depth = self.eval_crop(depth)
image_concat = torch.cat([image, image.flip(-1)])
pred_concat = self(image_concat)
pred = ((pred_concat[0] + pred_concat[1].flip(-1))/2).unsqueeze(0)
loss = silog(pred, depth)
metrics = compute_metrics(pred, depth, self.args)
self.log(f"{prefix}_loss", loss)
self.log_dict(metrics)
return loss, metrics
def validation_step(self, batch, batch_idx):
return self._shared_eval_step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
return self._shared_eval_step(batch, batch_idx, "test")
def configure_optimizers(self):
optimizer = get_optimizer(self, self.args)
return optimizer
class Decoder(nn.Module):
def __init__(self, in_channels, out_channels, args):
super().__init__()
self.deconv = NUM_DECONV
self.in_channels = in_channels
self.args = args
self.deconv_layers = self._make_deconv_layer(
NUM_DECONV,
NUM_FILTERS,
DECONV_KERNELS,
)
conv_layers = []
conv_layers.append(
nn.Conv2d(
in_channels=NUM_FILTERS[-1],
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1))
conv_layers.append(nn.BatchNorm2d(out_channels))
conv_layers.append(nn.ReLU(inplace=True))
self.conv_layers = nn.Sequential(*conv_layers)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
def forward(self, conv_feats):
out = self.deconv_layers(conv_feats[0])
out = self.conv_layers(out)
out = self.up(out)
out = self.up(out)
return out
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""Make deconv layers."""
layers = []
in_planes = self.in_channels
for i in range(num_layers):
kernel, padding, output_padding = self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
nn.ConvTranspose2d(
in_channels=in_planes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
in_planes = planes
return nn.Sequential(*layers)
def _get_deconv_cfg(self, deconv_kernel):
"""Get configurations for deconv layers."""
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
return deconv_kernel, padding, output_padding
def init_weights(self):
"""Initialize model weights."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.001)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
nn.init.normal_(m.weight, std=0.001)
if m.bias is not None:
nn.init.constant_(m.bias, 0)