-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeat_extractor_segments.py
248 lines (204 loc) · 9.63 KB
/
feat_extractor_segments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os, argparse
import numpy as np
import torch
import sys
from tqdm import tqdm
import pickle
from pathlib import Path
import sys
sys.path.append('./Dassl.pytorch/')
# sys.path.append(os.path.abspath(".."))
from datasets.oxford_pets import OxfordPets
from datasets.oxford_flowers import OxfordFlowers
from datasets.fgvc_aircraft import FGVCAircraft
from datasets.dtd import DescribableTextures
from datasets.eurosat import EuroSAT
from datasets.stanford_cars import StanfordCars
from datasets.food101 import Food101
from datasets.sun397 import SUN397
from datasets.caltech101 import Caltech101
from datasets.ucf101 import UCF101
from datasets.imagenet import ImageNet
from datasets.imagenetv2 import ImageNetV2
from datasets.imagenet_sketch import ImageNetSketch
from datasets.imagenet_a import ImageNetA
from datasets.imagenet_r import ImageNetR
from datasets.epic_kitchen_segments import EpicKitchenSegments
from dassl.utils import setup_logger, set_random_seed, collect_env_info
from dassl.config import get_cfg_default
from dassl.data.transforms import build_transform
from dassl.data import DatasetWrapper, DatasetSegmentWrapper
import clip
from utils.extend_config import extend_cfg, reset_cfg
# import pdb; pdb.set_trace()
def print_args(args, cfg):
print("***************")
print("** Arguments **")
print("***************")
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print("{}: {}".format(key, args.__dict__[key]))
print("************")
print("** Config **")
print("************")
print(cfg)
def setup_cfg(args):
cfg = get_cfg_default()
extend_cfg(cfg)
# 1. From the dataset config file
# if args.dataset_config_file:
# cfg.merge_from_file(args.dataset_config_file)
# 2. From the method config file
if args.config_file:
cfg.merge_from_file(args.config_file)
# 3. From input arguments
reset_cfg(cfg, args)
cfg.freeze()
return cfg
def main(args):
args.config_file = f'scripts/configs/{args.config_name}.yaml'
cfg = setup_cfg(args)
if cfg.SEED >= 0:
print("Setting fixed seed: {}".format(cfg.SEED))
set_random_seed(cfg.SEED)
setup_logger(cfg.OUTPUT_DIR)
if torch.cuda.is_available() and cfg.USE_CUDA:
torch.backends.cudnn.benchmark = True
print_args(args, cfg)
print("Collecting env info ...")
print("** System info **\n{}\n".format(collect_env_info()))
######################################
# Setup DataLoader
######################################
dataset = eval(cfg.DATASET.NAME)(cfg)
if args.split == "train":
dataset_input = dataset.train_x
elif args.split == "val":
dataset_input = dataset.val
else:
dataset_input = dataset.test
tfm_train = build_transform(cfg, is_train=False)
data_loader = torch.utils.data.DataLoader(
DatasetSegmentWrapper(cfg, dataset_input, transform=tfm_train, is_train=False),
batch_size=cfg.DATALOADER.TRAIN_X.BATCH_SIZE,
sampler=None,
shuffle=args.split == "train",
num_workers=cfg.DATALOADER.NUM_WORKERS,
drop_last=False,
pin_memory=(torch.cuda.is_available() and cfg.USE_CUDA),
)
########################################
# Setup Network
########################################
design_details = {"trainer": 'CoOp',
"vision_depth": 0,
"language_depth": 0, "vision_ctx": 0,
"language_ctx": 0}
clip_model, _ = clip.load("ViT-B/32", "cpu", jit=False, design_details=design_details)
clip_model.cuda().eval()
###################################################################################################################
# Start Feature Extractor
feature_list = []
label_list = []
train_dataiter = iter(data_loader)
output = {}
save_dir = os.path.join(cfg.OUTPUT_DIR, cfg.DATASET.NAME, f'{args.config_file}')
tmp_dir = os.path.join(save_dir, 'tmp2')
os.makedirs(tmp_dir, exist_ok=True)
print('should have been created:', tmp_dir)
for train_step in tqdm(range(1, len(train_dataiter) + 1)):
batch = next(train_dataiter)
assert batch["img"].shape[0] == 1, "Batch size should be 1 for feature extraction!"
tmp_file = os.path.join(tmp_dir, batch["narration_id"][0])
if os.path.exists(tmp_file):
continue
else:
pass
# Path(tmp_file).touch(exist_ok=True)
features_batch = []
# print('batch', batch['img'].shape, flush=True)
for offset in range(0, batch["img"].shape[1], 128):
start = offset
end = min(start + 128, batch['img'].shape[1])
data = batch["img"][:, start:end].cuda()
# print('data', data.shape, flush=True)
if len(data.shape) == 5:
b,t,c,h,w = data.shape
if t == 0: continue
data = data.view(-1, c,h,w)
with torch.no_grad():
feature = clip_model.visual(data)
# print('feature', feature.shape, flush=True)
# feature = feature.view(b,t,-1)
feature = feature.cpu()
features_batch.append(feature)
features_batch = torch.cat(features_batch, dim=0)
output[batch["narration_id"][0]] = features_batch
# print(f'{batch["narration_id"][0]} {features_batch.shape}')
# feature_list.append(feature[idx].tolist())
# label_list.extend(batch["narration_id"])
save_filename = f"{args.split}_{args.div}.pickle"
with open(os.path.join(save_dir, save_filename), 'wb') as f:
pickle.dump(output, f)
# np.savez(
# os.path.join(save_dir, save_filename),
# feature_list=feature_list,
# label_list=label_list,
# )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="", help="path to dataset")
parser.add_argument("--output-dir", type=str, default="", help="output directory")
parser.add_argument("--config-file", type=str, default="", help="path to config file")
parser.add_argument("--config_name", type=str, default="", help="path to config file")
parser.add_argument(
"--dataset-config-file",
type=str,
default="",
help="path to config file for dataset setup",
)
parser.add_argument("--num-shot", type=int, default=1, help="number of shots")
parser.add_argument("--split", type=str, choices=["train", "val", "test"], help="which split")
parser.add_argument("--div", type=int, default=0, help="which split")
parser.add_argument("--trainer", type=str, default="", help="name of trainer")
parser.add_argument("--backbone", type=str, default="", help="name of CNN backbone")
parser.add_argument("--head", type=str, default="", help="name of head")
parser.add_argument("--seed", type=int, default=-1, help="only positive value enables a fixed seed")
parser.add_argument("--eval-only", action="store_true", help="evaluation only")
parser.add_argument("--resume",type=str,default="",help="checkpoint directory (from which the training resumes)",)
parser.add_argument("--source-domains", type=str, nargs="+", help="source domains for DA/DG")
parser.add_argument("--target-domains", type=str, nargs="+", help="target domains for DA/DG")
parser.add_argument("--transforms", type=str, nargs="+", help="data augmentation methods")
parser.add_argument("--no-train", action="store_true", help="do not call trainer.train()")
parser.add_argument("--model-dir", type=str,default="", help="load model from this directory for eval-only mode",)
parser.add_argument("--load-epoch", type=int, help="load model weights at this epoch for evaluation")
parser.add_argument('-n', '--neptune', action='store_true',
help='Whether to observe (neptune)')
parser.add_argument('--device', default='cuda')
parser.add_argument('--resume_chkp', default='')
parser.add_argument('--world_size', default=-1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', action="store_true")
parser.add_argument('--force', action="store_true")
parser.add_argument('--with_neptune_id', default=None, type=str)
parser.add_argument('--neptune_mode', default='offline', type=str)
parser.add_argument('--slurm_id', default='0', type=str)
parser.add_argument('--slurm_job_name', default='0', type=str)
parser.add_argument('--tag', default='', type=str)
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training') #python -m torch.distributed.launch --nproc_per_node=
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument("opts", default=None, nargs=argparse.REMAINDER, help="modify config options using the command-line",)
args = parser.parse_args()
main(args)