diff --git a/PrimeNumberTheoremAnd/PerronFormula.lean b/PrimeNumberTheoremAnd/PerronFormula.lean index e978c07..8c199d3 100644 --- a/PrimeNumberTheoremAnd/PerronFormula.lean +++ b/PrimeNumberTheoremAnd/PerronFormula.lean @@ -505,7 +505,7 @@ lemma isTheta (xpos : 0 < x) : /-%% \begin{lemma}[isIntegrable]\label{isIntegrable}\lean{Perron.isIntegrable}\leanok Let $x>0$ and $\sigma\in\R$. Then -$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}d\sigma$$ +$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}dt$$ is integrable. \end{lemma} %%-/ @@ -957,7 +957,7 @@ lemma formulaGtOne (x_gt_one : 1 < x) (σ_pos : 0 < σ) : \uses{isHolomorphicOn, residuePull1, residuePull2, contourPull3, integralPosAux, vertIntBoundLeft, tendsto_rpow_atTop_nhds_zero_of_norm_gt_one, limitOfConstantLeft} - Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,1}$. + Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,-1}$. %%-/ set f : ℂ → ℂ := (fun s ↦ x^s / (s * (s + 1))) --%% First pull the contour from $(\sigma)$ to $(-1/2)$, picking up a residue $1$ at $s=0$. diff --git a/PrimeNumberTheoremAnd/Wiener.lean b/PrimeNumberTheoremAnd/Wiener.lean index e3d2da5..1b984ba 100644 --- a/PrimeNumberTheoremAnd/Wiener.lean +++ b/PrimeNumberTheoremAnd/Wiener.lean @@ -1709,7 +1709,7 @@ theorem wiener_ikehara_smooth_sub (h1 : Integrable Ψ) (hplus : closure (Functio /-%% \begin{corollary}[Smoothed Wiener-Ikehara]\label{WienerIkeharaSmooth}\lean{wiener_ikehara_smooth}\leanok - If $\Psi: (0,\infty) \to \C$ is smooth and compactly supported away from the origin, then, then + If $\Psi: (0,\infty) \to \C$ is smooth and compactly supported away from the origin, then, $$ \sum_{n=1}^\infty f(n) \Psi( \frac{n}{x} ) = A x \int_0^\infty \Psi(y)\ dy + o(x)$$ as $x \to \infty$. \end{corollary} @@ -2071,7 +2071,7 @@ lemma WienerIkeharaInterval_discrete' {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf : /-%% \begin{corollary}[Wiener-Ikehara theorem]\label{WienerIkehara}\lean{WienerIkeharaTheorem'}\leanok We have -$$ \sum_{n\leq x} f(n) = A x |I| + o(x).$$ +$$ \sum_{n\leq x} f(n) = A x + o(x).$$ \end{corollary} %%-/ @@ -2294,7 +2294,7 @@ But observe that the quantity $\int_0^{Cx} \hat \psi( \frac{1}{2\pi}$ is non-neg /-%% \begin{corollary}[Wiener-Ikehara theorem, II]\label{WienerIkehara-alt}\lean{WienerIkeharaTheorem''}\leanok We have -$$ \sum_{n\leq x} f(n) = A x |I| + o(x).$$ +$$ \sum_{n\leq x} f(n) = A x + o(x).$$ \end{corollary} %%-/