-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathML_Report_DRP2024.bib
242 lines (229 loc) · 8.01 KB
/
ML_Report_DRP2024.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
@misc{brownlee_2023,
title={PyTorch Tutorial: How to Develop Deep Learning Models with Python - MachineLearningMastery.com},
url={https://machinelearningmastery.com/pytorch-tutorial-develop-deep-learning-models/},
journal={MachineLearningMastery.com},
author={Brownlee, Jason},
year={2023},
month={Apr}
}
@misc{web:IBM:NN,
author = {IBM},
title = {What are Neural Networks},
year = {2024},
note = {Accessed 7 Febuary 2024},
url = {https://www.ibm.com/topics/neural-networks}
}
@inbook{book:AIModernApp,
title={Artificial Intelligence, A Modern Approach},
edition={3rd},
author={Stuart Russel and Peter Norvig},
year={2010},
publisher={Pearson Education},
address={New Jersey},
chapter={18}
}
@inbook{inbook:Aggarwal-1.2,
author = {Aggarwal, Charu C.},
title = {Neural Networks and Deep Learning: A Textbook},
year = {2018},
isbn = {3319944622},
publisher = {Springer Publishing Company, Incorporated},
edition = {1st},
chapter={1.2}
}
@inbook{inbook:Aggarwal-3.2,
author = {Aggarwal, Charu C.},
title = {Neural Networks and Deep Learning: A Textbook},
year = {2018},
isbn = {3319944622},
publisher = {Springer Publishing Company, Incorporated},
edition = {1st},
chapter={3.2}
}
@inbook{inbook:Aggarwal-4.1,
author = {Aggarwal, Charu C.},
title = {Neural Networks and Deep Learning: A Textbook},
year = {2018},
isbn = {3319944622},
publisher = {Springer Publishing Company, Incorporated},
edition = {1st},
chapter={4.1}
}
@misc{ciampiconi2023survey,
title={A survey and taxonomy of loss functions in machine learning},
author={Lorenzo Ciampiconi and Adam Elwood and Marco Leonardi and Ashraf Mohamed and Alessandro Rozza},
year={2023},
eprint={2301.05579},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@MISC {layers,
title = {what is a 'layer' in a neural network},
author = {cdeterman},
HOWPUBLISHED = {Stack Overflow},
url = {https://stackoverflow.com/questions/35345191/what-is-a-layer-in-a-neural-network/35347548#35347548}
}
@misc{jagtap2022important,
title={How important are activation functions in regression and classification? A survey, performance comparison, and future directions},
author={Ameya D. Jagtap and George Em Karniadakis},
year={2022},
eprint={2209.02681},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@inbook{Hagan_Martin,
title={Neural Network Design (2nd Edition)},
author={Hagan, Martin T and Demuth, Howard B and Beale, Mark H and Orlando, De, Jesús},
publisher={Martin Hagan},
year={2014},
isbn={978-0971732117},
url={https://hagan.okstate.edu/NNDesign.pdf},
chapter={4 Perceptron Learning Rule}
}
@MISC{overfitting-img,
author = {{Wikipedia, the free encyclopedia}},
title = {Overfitting},
note = {[Online; accessed April 30, 2024]},
url = {https://en.wikipedia.org/wiki/Overfitting}
}
@book{Goodfellow-et-al-2016,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
publisher={MIT Press},
note={\url{http://www.deeplearningbook.org}},
year={2016}
}
@book{burnham2002model,
author = {Burnham, K.P. and Anderson, D.R.},
publisher = {Springer Verlag},
title = {Model selection and multimodel inference: a practical information-theoretic approach},
year = 2002
}
@book{brownlee2016master,
title={Master Machine Learning Algorithms: Discover How They Work and Implement Them From Scratch},
author={Brownlee, J.},
url={https://books.google.ca/books?id=PdZBnQAACAAJ},
year={2016},
publisher={Machine Learning Mastery}
}
@MISC{capacity-Brownlee,
title={How to Control Neural Network Model Capacity With Nodes and Layers},
author={Jason Brownlee},
note={[Online; accessed April 30, 2024]},
url={https://machinelearningmastery.com/how-to-control-neural-network-model-capacity-with-nodes-and-layers/},
year=2020,
}
@MISC{capacity-Kowalik,
title={Capacities of Quantum Neural Networks, Part 1},
author={Kowalik, Marek},
note={[Online; accessed May 2, 2024]},
url={https://medium.com/@marekkowalik97/capacities-of-quantum-neural-networks-part-1-1a731f44be0},year=2023
}
@misc{WeightsBias,
title={Weights and Biases},
author={AI-Wiki},
url={https://machine-learning.paperspace.com/wiki/weights-and-biases},
note = {[Online; accessed April 30, 2024]}
}
@misc{GuideML,
title={A guide to the types of machine learning algorithms and their applications},
author={Katrina Wakefield},
publisher={SAS},
note = {[Online; accessed May 5, 2024]},
url={https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html}
}
@book{MurphyML,
author = "Kevin P. Murphy",
title = "Machine Learning: A Probabilistic Perspective",
publisher = "MIT Press",
year = 2012,
url = "https://probml.github.io/pml-book/book0.html"
}
@misc{Vasani_2019, title={This thing called weight decay}, url={https://towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab}, journal={Medium}, publisher={Towards Data Science}, author={Vasani, Dipam}, year={2019}, month={Nov}}
@misc{andriushchenko2023need,
title={Why Do We Need Weight Decay in Modern Deep Learning?},
author={Maksym Andriushchenko and Francesco D'Angelo and Aditya Varre and Nicolas Flammarion},
year={2023},
eprint={2310.04415},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@book{Kuhn_13,
author = {Kuhn, Max and Johnson, Kjell},
isbn = {978-1-4614-6848-6},
publisher = {Springer},
title = {Applied Predictive Modeling},
year = 2013
}
@article{JMLR:v15:srivastava14a,
author = {Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov},
title = {Dropout: A Simple Way to Prevent Neural Networks from Overfitting},
journal = {Journal of Machine Learning Research},
year = {2014},
volume = {15},
number = {56},
pages = {1929--1958},
url = {http://jmlr.org/papers/v15/srivastava14a.html}
}
@misc{SGD-BP,
url={https://machinelearningmastery.com/difference-between-backpropagation-and-stochastic-gradient-descent/},
title={Difference Between Backpropagation and Stochastic Gradient Descent},
author={Jason Brownlee},
year=2021,
note={[Online; accessed May 14, 2024]}
}
@misc{ruder2017overview,
title={An overview of gradient descent optimization algorithms},
author={Sebastian Ruder},
year={2017},
eprint={1609.04747},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{batchvsEpoch,
url={https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/},
title={Difference Between a Batch and an Epoch in a Neural Network},
author={Jason Brownlee},
year=2022,
note={[Online; accessed May 14, 2024]}
}
@INPROCEEDINGS{SurveyML,
author={N, Thomas Rincy and Gupta, Roopam},
booktitle={2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS)},
title={A Survey on Machine Learning Approaches and Its Techniques:},
year={2020},
pages={1-6},
doi={10.1109/SCEECS48394.2020.190}}
@misc{vaswani2023attention,
title={Attention Is All You Need},
author={Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin},
year={2017},
eprint={1706.03762},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{gu2023mamba,
title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
author={Albert Gu and Tri Dao},
year={2023},
eprint={2312.00752},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{Dreyfus1990ArtificialNN,
title={Artificial neural networks, back propagation, and the Kelley-Bryson gradient procedure},
author={Stuart E. Dreyfus},
journal={Journal of Guidance Control and Dynamics},
year={1990},
volume={13},
pages={926-928},
url={https://api.semanticscholar.org/CorpusID:121153720}
}
@book{Sutton1998,
author = {Sutton, Richard S. and Barto, Andrew G.},
edition = {Second},
publisher = {The MIT Press},
title = {Reinforcement Learning: An Introduction},
url = {http://incompleteideas.net/book/the-book-2nd.html},
year = {2018 }
}