-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrainer.py
187 lines (128 loc) · 6.93 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
from torch import nn
import torch.nn.functional as F
import torch
import pytorch_lightning as pl
from pytorch_lightning import Trainer, LightningModule
from torch.optim import lr_scheduler
from data_generation import Event_DataModule
import evaluation_utils
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import CSVLogger
import training_utils
import json
import pandas as pd
import numpy as np
import copy
from torch.optim import AdamW
from models.EvT import CLFBlock, MLPBlock
from models.EvT import EvNetBackbone
class EvNetModel(LightningModule):
def __init__(self, backbone_params, clf_params, optim_params, loss_weights=None):
super().__init__()
self.save_hyperparameters()
self.backbone_params = backbone_params
self.clf_params = clf_params
self.optim_params = optim_params
# Initialize Backbone
self.backbone = EvNetBackbone(**backbone_params)
# Initialize classifier
self.clf_params['ipt_dim'] = self.backbone_params['embed_dim']
# TODO: move to single variable
self.models_clf = nn.ModuleDict([ [str(0),CLFBlock(**self.clf_params)] ])
# self.models_clf = CLFBlock(**self.clf_params)
self.loss_weights = loss_weights
self.init_optimizers()
def init_optimizers(self):
self.criterion = nn.NLLLoss(weight = self.loss_weights)
self.accuracy = pl.metrics.Accuracy()
def forward(self, x, pixels):
# Get updated latent vectors
embs = self.backbone(x, pixels)
# Get latent vectors classification
clf_logits = torch.stack([ self.models_clf[str(0)](embs) ]).mean(axis=0)
return embs, clf_logits
def configure_optimizers(self):
# Import base optimizer
base_optim = AdamW
optim = base_optim(self.parameters(), **self.optim_params['optim_params'])
if 'scheduler' in self.optim_params:
if self.optim_params['scheduler']['name'] == 'lr_on_plateau':
sched = lr_scheduler.ReduceLROnPlateau(optim, **self.optim_params['scheduler']['params'])
elif self.optim_params['scheduler']['name'] == 'one_cycle_lr':
sched = lr_scheduler.OneCycleLR(optim, max_lr=self.optim_params['optim_params']['lr'], **self.optim_params['scheduler']['params'])
return {'optimizer': optim, 'lr_scheduler': sched, 'monitor': self.optim_params['monitor']}
return optim
# Forward data and calculate loss and acc
def step(self, polarity, pixels, y):
embs, clf_logits = self(polarity, pixels)
loss_clf, loss_contr = 0.0, 0.0
logs = {}
loss_clf = self.criterion(clf_logits, y)
preds = torch.argmax(clf_logits, dim=-1)
acc = self.accuracy(preds, y)
logs['loss_clf'] = loss_clf
logs['acc'] = acc
logs['loss_total'] = loss_clf + loss_contr
return logs
def training_step(self, batch, batch_idx):
# batch_data -> (#imesteps, batch_size, #events, 2) - (#imesteps, batch_size, #events, 2) - (batch_size)
polarity, pixels, y = batch
losses = self.step(polarity, pixels, y)
for k,v in losses.items():
self.log(f'train_{k}', v, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
return losses['loss_total']
def validation_step(self, batch, batch_idx):
polarity, pixels, y = batch
losses = self.step(polarity, pixels, y)
for k,v in losses.items():
self.log(f'val_{k}', v, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
return losses['loss_total']
def train(folder_name, path_results, data_params, backbone_params, clf_params,
training_params, optim_params, callback_params, logger_params):
# Create the folder where to store the training results
path_model = training_utils.create_model_folder(path_results, folder_name)
callbacks = []
for k, params in callback_params:
if k == 'early_stopping': callbacks.append(EarlyStopping(**params))
if k == 'lr_monitor': callbacks.append(LearningRateMonitor(**params))
if k == 'model_chck':
params['dirpath'] = params['dirpath'].format(path_model)
callbacks.append(ModelCheckpoint(**params))
loggers = []
if 'csv' in logger_params:
logger_params['csv']['save_dir'] = logger_params['csv']['save_dir'].format(path_model)
loggers.append(CSVLogger(**logger_params['csv']))
# =============================================================================
# Train
# =============================================================================
dm = Event_DataModule(**data_params)
backbone_params['token_dim'] = dm.token_dim
clf_params['opt_classes'] = dm.num_classes
if 'pos_encoding' in backbone_params and backbone_params['pos_encoding']['params'].get('shape', -1) == -1:
backbone_params['pos_encoding']['params']['shape'] = (dm.width, dm.height)
if backbone_params['downsample_pos_enc'] == -1: backbone_params['downsample_pos_enc'] = data_params['patch_size']
if optim_params['scheduler']['name'] == 'one_cycle_lr':
optim_params['scheduler']['params']['steps_per_epoch'] = 1
model = EvNetModel(backbone_params=copy.deepcopy(backbone_params),
clf_params=copy.deepcopy(clf_params),
optim_params=copy.deepcopy(optim_params),
loss_weights = None if not data_params['balance'] else dm.train_dataloader().dataset.get_class_weights()
)
trainer = Trainer(**training_params, callbacks=callbacks, logger=loggers)
# Save all params
json.dump({'data_params': data_params, 'backbone_params': backbone_params, 'clf_params': clf_params,
'training_params': training_params,
'optim_params': optim_params, 'callbacks_params': callback_params, 'logger_params': logger_params},
open(path_model+'all_params.json', 'w'))
trainer.fit(model, dm)
print(' ** Train finished:', path_model)
logs = evaluation_utils.load_csv_logs_as_df(path_model)
val_acc = logs[~logs['val_acc'].isna()]['val_acc']
print(' - Max. Accuracy: {:.4f}'.format(val_acc.values.max()))
for c in [ c for c in logs.columns if 'val_' in c and 'acc' not in c ]:
v = logs[~logs[c].isna()][c]
v = v.values.min() if len(v) > 0 else 0.0
print(' - Min. [{}]: {:.4f}'.format(c, v))
print("path_model = '{}'".format(path_model))
return path_model