-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_src_oh.py
235 lines (210 loc) · 8.38 KB
/
train_src_oh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import os, sys
sys.path.append('./')
import os.path as osp
import torchvision
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
import network
from torch.utils.data import DataLoader
import random, pdb, math, copy
import pickle
from utils import *
from torch import autograd
import shutil
def print_args(args):
s = "==========================================\n"
for arg, content in args.__dict__.items():
s += "{}:{}\n".format(arg, content)
return s
def train_source(args):
dset_loaders = office_load(args)
## set base network
netF = network.ResNet_sdaE().cuda()
netC = network.feat_classifier(type=args.layer,
class_num=args.class_num,
bottleneck_dim=args.bottleneck).cuda()
optimizer = optim.SGD([{
'params': netF.feature_layers.parameters(),
'lr': args.lr
}, {
'params': netF.bottle.parameters(),
'lr': args.lr * 10
}, {
'params': netF.em.parameters(),
'lr': args.lr * 10
}, {
'params': netF.bn.parameters(),
'lr': args.lr * 10
}, {
'params': netC.parameters(),
'lr': args.lr * 10
}],
momentum=0.9,
weight_decay=5e-4,
nesterov=True)
smax = 100
acc_init = 0
for epoch in range(args.max_epoch):
netF.train()
netC.train()
iter_source = iter(dset_loaders["source_tr"])
for batch_idx, (inputs_source,
labels_source) in enumerate(iter_source):
if inputs_source.size(0) == 1:
continue
inputs_source, labels_source = inputs_source.cuda(
), labels_source.cuda()
progress_ratio = batch_idx / (len(dset_loaders) - 1)
s = (smax - 1 / smax) * progress_ratio + 1 / smax
outputs, masks = netF(inputs_source, 0, s, True)
output0 = netC(outputs[0])
output1 = netC(outputs[1])
reg = 0
count = 0
for m in masks[0]:
reg += m.sum() # numerator
count += np.prod(m.size()).item() # denominator
for m in masks[1]:
reg += m.sum() # numerator
count += np.prod(m.size()).item()
reg /= count
loss = CrossEntropyLabelSmooth(
num_classes=args.class_num, epsilon=args.smooth)(
output0, labels_source) + CrossEntropyLabelSmooth(
num_classes=args.class_num, epsilon=args.smooth)(
output1, labels_source) + 0.15 * reg
optimizer.zero_grad()
loss.backward()
# Compensate embedding gradients
for n, p in netF.em.named_parameters():
num = torch.cosh(torch.clamp(s * p.data, -10, 10)) + 1
den = torch.cosh(p.data) + 1
p.grad.data *= smax / s * num / den
torch.nn.utils.clip_grad_norm(netF.parameters(), 10000)
optimizer.step()
netF.eval()
netC.eval()
acc_s_tr1, _ = cal_acc_sda(dset_loaders['source_te'], netF, netC)
acc_s_tr2, _ = cal_acc_sda(dset_loaders['source_te'], netF, netC, t=1)
#acc_s_te, _ = cal_acc_(dset_loaders['source_te'], netF, netB, netC)
log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%({:.2f}%)'.format(
args.dset, epoch + 1, args.max_epoch, acc_s_tr1 * 100,
acc_s_tr2 * 100)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str)
if acc_s_tr1 >= acc_init:
acc_init = acc_s_tr1
best_netF = netF.state_dict()
best_netC = netC.state_dict()
torch.save(best_netF, osp.join(args.output_dir, "source_F.pt"))
torch.save(best_netC, osp.join(args.output_dir, "source_C.pt"))
def test_target(args):
dset_loaders = office_load(args)
## set base network
netF = network.ResNet_sdaE().cuda()
netC = network.feat_classifier(type=args.layer,
class_num=args.class_num,
bottleneck_dim=args.bottleneck).cuda()
args.modelpath = args.output_dir + '/source_F.pt'
netF.load_state_dict(torch.load(args.modelpath))
args.modelpath = args.output_dir + '/source_C.pt'
netC.load_state_dict(torch.load(args.modelpath))
netF.eval()
netC.eval()
acc, _ = cal_acc_sda(dset_loaders['test'], netF, netC)
log_str = 'Task: {}, Accuracy = {:.2f}%'.format(args.dset, acc * 100)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Domain Adaptation on office-home dataset')
parser.add_argument('--gpu_id',
type=str,
nargs='?',
default='0',
help="device id to run")
parser.add_argument('--s', type=int, default=0, help="source")
parser.add_argument('--t', type=int, default=1, help="target")
parser.add_argument('--max_epoch',
type=int,
default=20,
help="maximum epoch")
parser.add_argument('--batch_size',
type=int,
default=64,
help="batch_size")
parser.add_argument('--worker',
type=int,
default=4,
help="number of workers")
parser.add_argument('--dset', type=str, default='a2c')
parser.add_argument('--lr',
type=float,
default=0.001,
help="learning rate")
parser.add_argument('--seed', type=int, default=2020, help="random seed")
parser.add_argument('--class_num', type=int, default=65)
parser.add_argument('--bottleneck', type=int, default=256)
parser.add_argument('--layer',
type=str,
default="wn",
choices=["linear", "wn"])
parser.add_argument('--classifier',
type=str,
default="bn",
choices=["ori", "bn"])
parser.add_argument('--smooth', type=float, default=0.1)
parser.add_argument('--output', type=str, default='Office-Home')
parser.add_argument('--home', action='store_true')
parser.add_argument('--office31', action='store_true')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
torch.backends.cudnn.deterministic = True
current_folder = "./"
args.output_dir = osp.join(current_folder, args.output,
'seed' + str(args.seed), args.dset)
if not osp.exists(args.output_dir):
os.system('mkdir -p ' + args.output_dir)
if not osp.exists(args.output_dir):
os.mkdir(args.output_dir)
if args.home:
task = ['c', 'a', 'p', 'r']
if args.office31:
task = ['a', 'd', 'w']
task_s = args.dset.split('2')[0]
task.remove(task_s)
task_all = [task_s + '2' + i for i in task]
for task_sameS in task_all:
path_task = os.getcwd() + '/' + args.output + '/seed' + str(
args.seed) + '/' + task_sameS
if not osp.exists(path_task):
os.mkdir(path_task)
if not osp.exists(osp.join(args.output_dir + '/source_F.pt')):
args.out_file = open(osp.join(args.output_dir, 'log_src_val.txt'), 'w')
args.out_file.write(print_args(args) + '\n')
args.out_file.flush()
train_source(args)
test_target(args)
file_f = osp.join(args.output_dir + '/source_F.pt')
file_c = osp.join(args.output_dir + '/source_C.pt')
task.remove(args.dset.split('2')[1])
task_remain = [task_s + '2' + i for i in task]
for task_sameS in task_remain:
path_task = os.getcwd() + '/' + args.output + '/seed' + str(
args.seed) + '/' + task_sameS
pathF_copy = osp.join(path_task, 'source_F.pt')
pathC_copy = osp.join(path_task, 'source_C.pt')
if not osp.exists(pathF_copy):
shutil.copy(file_f, pathF_copy)
shutil.copy(file_c, pathC_copy)