-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReaction.py
253 lines (202 loc) · 7.08 KB
/
Reaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Potencial.py
# generates a potential ramp #
# *** warning supresion
import warnings
warnings.filterwarnings("ignore")
import time
# *** numeric libraries
try:
import numpy as np #pip3 install numpy
from functools import reduce
import scipy.io
from scipy.interpolate import interp1d
except:
print('WARNNING :: Potencial.py :: can NOT correctly import numerical libraries')
print('Install by: ( pip3 install scipy )')
# *** graph libraries
try:
import matplotlib.pyplot as plt #pip3 install matplotlib
from matplotlib.animation import FuncAnimation
import ipywidgets as widgets
except:
print('WARNNING :: Potencial.py :: can NOT correctly import graph libraries')
print('Install by: ( pip3 install matplotlib )')
class Reaction(object):
def __init__(self, time=None, dt=None, step=None, steps=None,
k=None, t=None, C=None, C0=None,
react=None, react_user=None, reactans=None):
# == Fisical parameters == #
self.time = time # Time variables | ARRAY | shape = duration/dt
self.dt = dt
self.step = step
self.steps = steps
self.t = t
self.C = C # Potentail | ARRAY | shape = duration/dt
self.C0 = C0
self._dCdt_c = None
self._dCdt_t = None
self.k = k
self.react = react # [[reactivos], [productos], k, [stekiometria]]
self.react_user = react_user
self.reactans = reactans
@property
def dCdt_t(self):
if type(self._dCdt_t) == type(None):
self._dCdt_t = (self.time[1:] + self.time[:-1])/2
return self._dCdt_t
@dCdt_t.setter
def dCdt_t(self, dCdt_t):
self.dCdt_t = dCdt_t
@property
def dCdt(self):
if type(self._dCdt) == type(None):
self._dCdt = (self.C[1:] - self.C[:-1]) / self.dt
return self._dCdt
@dCdt.setter
def dCdt(self, dCdt):
self.dCdt = dCdt
def print(self, ):
pass
def timer(func):
def wrapper(*args, **kwargs):
before = time.time()
r = func(*args, **kwargs)
print(f'{func} {time.time()-before}s ')
return r
return wrapper
def set_Cti(self, step_t=0, C=None, reactans=None):
if type(reactans) == type(None):
# a-sync array as input
self.C_x_t[step_t, :] = C
else:
# sincronize by reactans name
if len(C.shape) == 2:
# matrix [time, reactant] as input
# CC time dependant
for i, r in enumerate(self.reactans):
if r in reactans:
self.C[step_t, i] = C[:, reactans.index(r)]
elif len(C.shape) == 1:
# matrix [reactant] as input
# CC time INdependant
for i, r in enumerate(self.reactans):
if r in reactans:
self.C[step_t, i] = C[reactans.index(r)]
return self.C
def reaction_step(self, react=None, C=None, step=None, dt=None):
react = react if type(react) != type(None) else self.react
C = C if type(C) != type(None) else self.C
step = step if type(step) != type(None) else self.step
dt = dt if type(dt) != type(None) else self.dt
for i, c in enumerate(C[step,:]):
C[step+1,i] = c
for (reactans, products, rate, coef_react, coef_prod) in react:
v = np.prod(C[step,reactans]**coef_react) * rate[step]*dt
v = 0.1 if v>0.1 else -0.1 if v<-0.1 else v
C[step+1,reactans] -= v*coef_react
C[step+1,products] += v*coef_prod
C[step+1, C[step+1,:]<0] = 0
#print(self.reactans)
#C[step+1, self.reactans.index('O2')] = 0.25 # !!!!!
return C[step+1,:]
@timer
def reaction_evaluate(self, react=None, C=None, dt=None, time=None,
save=True, v=True ):
react = react if type(react) != type(None) else self.react
C = C if type(C) != type(None) else self.C
dt = dt if type(dt) != type(None) else self.dt
time = time if type(time) != type(None) else self.time
for step, t in enumerate(time):
C[step+1,:] = self.reaction_step(react=react, C=C, step=step, dt=dt)
if save:
self.C = C
self.react = react
self.step = step
self.dt = dt
if v: self.summary()
return C
def allocate_mem(self, react_user=None, dt=None, time=None, IC=None,
reactans=None, save=True ):
reactans = reactans if not type(reactans) == type(None) else self.reactans if not type(self.reactans) == type(None) else []
time_N = int(time/dt)
react = []
time = np.array([ n*dt for n in range(time_N) ])
for (key,r) in react_user.items():
for (key,value) in r['reactans'].items():
if not key in reactans: reactans.append(key)
for (key,value) in r['products'].items():
if not key in reactans: reactans.append(key)
C = np.zeros( (time_N+1, len(reactans)) )
for (key,r) in react_user.items():
reactans_bin= np.array([ True if r_o in r['reactans'] else False for r_o in reactans ] )
products_bin= np.array([ True if r_o in r['products'] else False for r_o in reactans ] )
rate = np.repeat(r['rate'] ,time_N) if type(r['rate']) == float else r['rate']
coef_react = np.array([ value for (key,value) in r['reactans'].items() ] )
coef_prod = np.array([ value for (key,value) in r['products'].items() ] )
react.append([reactans_bin, products_bin, rate, coef_react, coef_prod])
for i, r in enumerate(reactans):
if r in IC:
C[0,i] = IC[r]
if save:
self.time_N = time_N
self.time = time
self.react = react
self.C = C
self.dt = dt
self.reactans = reactans
self.react_user = react_user
return react
# react_user={'Reaction':{'reactans':['H2O':1],'products':['O2':1],'rate':1 } }, dt=0.1, time=10,
# [[reactivos], [productos], k, [stekiometria]]
def summary(self, ):
print('='*5+' Reaction '+'='*5)
print(f'\t Steps : {self.step}')
print(f'\t dt : {self.dt}s')
print(f'\t Reaction duration : {self.time_N*self.dt}s')
print(f'\t Reactions : {len(self.react)}')
for i, (key,r) in enumerate(self.react_user.items()):
reac = ' + '.join([f'{int(r1)} {key1}' if r1!=1 else f'{key1}' for (key1,r1) in r['reactans'].items() ])
prod = ' + '.join([f'{int(r1)} {key1}' if r1!=1 else f'{key1}' for (key1,r1) in r['products'].items() ])
print( f' {reac} --(k{i+1})--> {prod}' )
@timer
def plot(self, ax=None, reactans=None):
# === Initialize variables === #
if type(ax) == type(None): fig, ax = plt.subplots(1,1)
# === PLOT === #
for c in range(self.C.shape[1]):
if type(reactans) == type(None) or self.reactans[c] in reactans:
ax.plot( self.time, self.C[1:,c], lw=1, ls='--', alpha=0.8, label=self.reactans[c])
ax.set_xlabel('Time (s)')
ax.set_ylabel('CC')
ax.set_title('Reaction plot')
# === LABEL hansdler === #
handles, labels = ax.get_legend_handles_labels()
# reverse the order
ax.legend(handles[::-1], labels[::-1])
# or sort them by labels
import operator
hl = sorted(zip(handles, labels),
key=operator.itemgetter(1))
handles2, labels2 = zip(*hl)
ax.legend(handles2, labels2)
@timer
def cookbook(self, ):
'''
# @property
# @prop.setter
# @deleter
U = Potential()
U.generate(duration=5, dt=0.1, ciclos=6, slope=2)
U.plot()
plt.show()
'''
self.allocate_mem( {'Reaction':{'reactans':{'H2O':1},'products':{'O2':1},'rate':0.1 } },
IC={'H2O':0.1, 'O2':0.1}, dt=0.1, time=100 )
self.reaction_evaluate()
self.plot()
plt.show()
'''
# == Eg. == #
R = Reaction()
R.cookbook()
'''