-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathbatch_model_test.py
87 lines (71 loc) · 3.4 KB
/
batch_model_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
import os
import glob
import numpy as np
import chainer
import chainer.cuda
from chainer import cuda, serializers, Variable
from chainer import training
import chainer.functions as F
import cv2
import argparse
import common.net as net
import datasets
from PIL import Image
from utils import save_images_grid
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CycleGAN model testing script')
parser.add_argument('--gpu', '-g', type=int, default=0, help='GPU ID (negative value indicates CPU)')
parser.add_argument('--gen_class', '-c', default='Generator_ResBlock_9', help='Default generator class')
parser.add_argument("--load_gen_f_model", default='', help='load generator model')
parser.add_argument("--load_gen_g_model", default='', help='load generator model')
parser.add_argument('--direction', '-d', type=int, default=1, help='direction: 0 for G(X), 1 for F(Y)')
parser.add_argument('--input_channels', type=int, default=3, help='number of input channels')
parser.add_argument('--rows', type=int, default=5, help='rows')
parser.add_argument('--cols', type=int, default=5, help='cols')
parser.add_argument('--eval_folder', '-e', default='evaldata', help='directory to output the evaluation result')
parser.add_argument('--out', '-o', default='output' ,help='saved file name')
parser.add_argument("--resize_to", type=int, default=256, help='resize the image to')
parser.add_argument("--crop_to", type=int, default=256, help='crop the resized image to')
parser.add_argument("--load_dataset", default='silverhair_train', help='load dataset')
parser.add_argument("--recurrent", type=int, default=1, help='apply the function recursively')
args = parser.parse_args()
print(args)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
if not os.path.exists(args.eval_folder):
os.makedirs(args.eval_folder)
gen_g = getattr(net, args.gen_class)()
gen_f = getattr(net, args.gen_class)()
if args.load_gen_g_model != '':
serializers.load_npz(args.load_gen_g_model, gen_g)
print("Generator G model loaded")
if args.load_gen_f_model != '':
serializers.load_npz(args.load_gen_f_model, gen_f)
print("Generator F model loaded")
if args.gpu >= 0:
gen_g.to_gpu()
gen_f.to_gpu()
print("use gpu {}".format(args.gpu))
test_dataset = getattr(datasets, args.load_dataset)(flip=0, resize_to=args.resize_to, crop_to=args.crop_to)
cnt = args.rows * args.cols
xp = gen_g.xp
input = xp.zeros((cnt, args.input_channels, args.crop_to, args.crop_to)).astype("f")
for i in range(0, args.rows):
for j in range(0,args.cols):
x, y = test_dataset.get_example(0)
if args.direction == 1:
input[i*args.cols + j, :] = xp.asarray(y)
else:
input[i*args.cols + j, :] = xp.asarray(x)
input = input
save_images_grid(input,path=args.eval_folder+"/"+args.out+".0.jpg", grid_w=args.rows, grid_h=args.cols)
for i in range(args.recurrent):
if args.direction == 1:
output = gen_f(input, volatile=True)
else:
output = gen_g(input, volatile=True)
del input
save_images_grid(output,path=args.eval_folder+"/"+args.out+"."+str(i+1)+".jpg", grid_w=args.rows, grid_h=args.cols)
output.unchain_backward()
input = output.data