forked from Wang-Yuanlong/MultimodalPred
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnote_train_partial.py
193 lines (172 loc) · 7.98 KB
/
note_train_partial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from dataset.mul_dataset import MUL_dataset
from models.note_module import Note_module
from torch.cuda.amp import autocast
from torch.cuda.amp.grad_scaler import GradScaler
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score, precision_recall_curve, auc
from sklearn.metrics import classification_report
from tqdm import tqdm
device = 'cuda' if torch.cuda.is_available() else 'cpu'
use_amp = True
task = 'longstay'
use_ratio = True
best_test_only = False
longstay_mintime = 3*24
print(f'on the {device} device')
print('run note partial experiment')
print('task: {}'.format(task))
if use_ratio:
print('use ratio based threshold')
img_transform = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize(norm_mean, norm_std),
])
train_dataset = MUL_dataset(split='train',img_transform=img_transform, task=task, longstay_mintime=longstay_mintime)
test_dataset = MUL_dataset(split='test', img_transform=img_transform, task=task, longstay_mintime=longstay_mintime)
val_dataset = MUL_dataset(split='val', img_transform=img_transform, task=task, longstay_mintime=longstay_mintime)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, collate_fn=train_dataset.get_collate())
test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False, collate_fn=test_dataset.get_collate())
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False, collate_fn=val_dataset.get_collate())
model = Note_module(device=device)
model = model.to(device)
epoches = 20
if task == 'mortality':
criterion = nn.CrossEntropyLoss(weight=torch.tensor([1, 15], dtype=torch.float)).to(device)
elif task == 'longstay':
criterion = nn.CrossEntropyLoss(weight=torch.tensor([1, 1], dtype=torch.float)).to(device)
elif task == 'readmission':
criterion = nn.CrossEntropyLoss(weight=torch.tensor([1, 20], dtype=torch.float)).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
scaler = GradScaler()
def train_epoch(model, device, train_loader, optimizer):
model.train()
total_loss = []
for batch_idx, ((demo, ce_ts, le_ts, pe_ts, timestamps), (img_list, img_positions, img_times), notes, target) in enumerate(train_loader):
torch.cuda.empty_cache()
with autocast(enabled=use_amp):
target = target.to(device)
pred = model(notes)
loss = criterion(pred, target)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# optimizer.step()
loss_num = loss.data.item()
total_loss.append(loss.data * len(target))
if batch_idx % 50 == 0:
print('batch [{}/{}] loss: {:.3f}'.format(batch_idx + 1, len(train_loader), loss_num))
avg_loss = torch.sum(torch.stack(total_loss)) / len(train_dataset)
return avg_loss
@torch.no_grad()
def val_epoch(model, device, val_loader):
all_targets = []
all_preds = []
for batch_idx, ((demo, ce_ts, le_ts, pe_ts, timestamps), (img_list, img_positions, img_times), notes, target) in enumerate(val_loader):
torch.cuda.empty_cache()
with autocast(enabled=use_amp):
target = target.to(device)
pred = model(notes)
all_targets.append(target)
all_preds.append(pred.to('cpu'))
all_targets = torch.cat(all_targets).to('cpu').float().numpy()
all_preds = torch.cat(all_preds).float()
all_preds = torch.softmax(all_preds, dim=1)[:, 1].to('cpu').numpy()
auroc = roc_auc_score(all_targets, all_preds)
return auroc
@torch.no_grad()
def cal_threshold(model, device, val_loader, ratio=None):
model.eval()
if ratio == None:
return None
all_preds = []
for batch_idx, ((demo, ce_ts, le_ts, pe_ts, timestamps), (img_list, img_positions, img_times), notes, target) in enumerate(test_loader):
torch.cuda.empty_cache()
with autocast(enabled=use_amp):
target = target.to(device)
pred = model(notes)
all_preds.append(pred.to('cpu'))
all_preds = torch.cat(all_preds).float()
all_probs = torch.softmax(all_preds, dim=1).to('cpu').numpy()
pos_prob = all_probs[:, 1]
neg_num = int(len(pos_prob) * (1 - ratio))
partition = np.partition(pos_prob, neg_num)
x1, x2 = np.max(partition[:neg_num]), partition[neg_num]
return (x1 + x2)/2
@torch.no_grad()
def test(model, device, test_loader, threshold = None):
model.eval()
all_targets = []
all_preds = []
for batch_idx, ((demo, ce_ts, le_ts, pe_ts, timestamps), (img_list, img_positions, img_times), notes, target) in enumerate(test_loader):
torch.cuda.empty_cache()
with autocast(enabled=use_amp):
target = target.to(device)
pred = model(notes)
all_targets.append(target)
all_preds.append(pred.to('cpu'))
all_targets = torch.cat(all_targets).to('cpu').float().numpy()
all_preds = torch.cat(all_preds).float()
all_probs = torch.softmax(all_preds, dim=1).to('cpu').numpy()
if threshold == None:
all_preds = np.argmax(all_probs, axis=1)
else:
all_preds = (all_probs[:, 1] >= threshold).astype('int')
all_probs = all_probs[:, 1]
auroc = roc_auc_score(all_targets, all_probs)
precision, recall, t = precision_recall_curve(all_targets, all_probs)
auprc = auc(recall, precision)
ap = average_precision_score(all_targets, all_probs)
report = classification_report(all_targets, all_preds, target_names=['negative', 'positive'])
positive_num = all_preds.sum()
return auroc, ap, auprc, report, positive_num
@torch.no_grad()
def best_test(model, device, test_loader, val_loader = None, ratio = None):
model.load_state_dict(torch.load('./saved_model/best_note_partial_model_{}.pth'.format(task)))
if val_loader != None:
threshold = cal_threshold(model, device, val_loader, ratio)
else:
threshold = None
auroc, ap, auprc, report, positive_num = test(model, device, test_loader, threshold)
print('test metric -- auroc:{:.3f}'.format(auroc))
print('test metric -- ap:{:.3f}'.format(ap))
print('test metric -- auprc:{:.3f}'.format(auprc))
print('test metric -- predicted positive:{}'.format(positive_num))
print('test metric -- report:\n{}'.format(report))
return auroc, ap, auprc, report, positive_num
def train(model, device, train_loader, val_loader, test_loader, optimizer, epoch, ratio = None):
best_roc = 0
for epoch_idx in tqdm(range(epoch)):
print('Epoch [{}/{}] '.format(epoch_idx + 1, epoch))
epoch_loss = train_epoch(model, device, train_loader, optimizer)
torch.cuda.empty_cache()
print('Epoch [{}/{}] loss:{:.3f}'.format(epoch_idx + 1, epoch, epoch_loss))
auroc = val_epoch(model, device, val_loader)
torch.cuda.empty_cache()
if auroc > best_roc:
print('new best auroc: {} -> {}'.format(best_roc, auroc))
best_roc = auroc
print('model saved.')
torch.save(model.state_dict(), './saved_model/best_note_partial_model_{}.pth'.format(task))
# model.load_state_dict(torch.load('./saved_model/best_cxr_model.pth'))
# auroc, report, positive_num = test(model, device, test_loader)
# torch.cuda.empty_cache()
# print('test metric -- auroc:{:.3f}'.format(auroc))
# print('test metric -- predicted positive:{}'.format(positive_num))
# print('test metric -- report:\n{}'.format(report))
best_test(model, device, test_loader, val_loader, ratio)
if __name__ == "__main__":
if use_ratio:
ratio = ((train_dataset.label.sum() + val_dataset.label.sum())/(len(train_dataset) + len(val_dataset))).item()
else:
ratio = None
if best_test_only:
best_test(model, device, test_loader, val_loader, ratio)
else:
train(model, device, train_loader, val_loader, test_loader, optimizer, epoches, ratio)
# best_test(model, device, test_loader, val_loader, ratio)