-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathingest.py
31 lines (24 loc) · 1.05 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import PyPDFLoader
from langchain.vectorstores import Qdrant
#embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# Equivalent to SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
print(embeddings)
loader = DirectoryLoader('data/', glob="**/*.pdf", show_progress=True, loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
url = "http://localhost:6333"
qdrant = Qdrant.from_documents(
texts,
embeddings,
url=url,
prefer_grpc=False,
collection_name="vector_db"
)
print("Vector DB Successfully Created!")