-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpunet_nf.py
27 lines (20 loc) · 1.06 KB
/
punet_nf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch.nn as nn
from models.punet import ProbabilisticUnet
from models.utils import gini
from models.flowDensities import PlanarFlowDensity
class PUNet_NF(ProbabilisticUnet):
def __init__(self, d):
super().__init__(d=d)
self.posterior = PlanarFlowDensity(d['num_flows'], d['input_channels'], d['num_filters'], d['no_convs_per_block'],
d['latent_dim'], d['initializers'], flow=d['flow'], posterior=True, norm=d['norm'])
def forward(self, patch, segm, training=True, **kwargs):
if training:
self.log_det_j_q, self.z0_q, self.z_q, self.posterior_latent_space = self.posterior.forward(patch, segm)
_, self.prior_latent_space = self.prior.forward(patch, None)
self.batch_size = patch.shape[0]
self.unet_features = self.unet.forward(patch, False)
def kl_divergence(self, **kwargs):
q = self.posterior_latent_space.log_prob(self.z0_q)
p = self.prior_latent_space.log_prob(self.z_q)
kl_div = (q - p - self.log_det_j_q).sum()
return kl_div