-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlinearity_hypothesis.py
428 lines (381 loc) · 19.1 KB
/
linearity_hypothesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
"""Analysis for counting regions.
"""
import numpy as np
import svgwrite
from experiments.experiment import Experiment
from pysyrenn import LinesClassifier
class LinearityHypothesisExperiment(Experiment):
"""Empirically investigating Linear Explanation of Adversarial Examples.
Corresponds to Section 5 of [1]. A number of different results are taken
from this experiment:
- Expository plot (Figure 4)
- FGSM density/random density for {normal,diffai,pgd}x{mnist,cifar10}
(Tables 3ab).
- Normal/{DiffAI,PGD}x{mnist,cifar10} densities for {FGSM,random}
directions (Tables 4ab).
- Weighted relative gradient change (lines 240 - 250).
"""
@staticmethod
def perturb_l_inf(image, signs, l_inf):
"""Maximally perturbs (un-processed) @image within some l_inf bound.
"""
distances = np.floor(l_inf * image)
perturbed = image + (distances * signs)
return perturbed.clip(0, 255)
def fgsm(self, network, image, to_label, l_inf, process):
"""Returns an FGSM-perturbed version of @image.
@process should be the pre-processing function for @network, while
@to_label is the target label. @l_inf is the l_inf norm we respect.
"""
signs = np.sign(network.compute_gradients(
[process(image)], to_label))[0]
return self.perturb_l_inf(image, signs, l_inf)
def random_perturbation(self, image, l_inf, seed):
"""Returns a randomly-perturbed version of @image.
@seed should be based on the image itself so that all networks get the
same random images.
"""
np.random.seed(seed)
signs = np.sign(np.random.choice([-1, 1], image.shape))
return self.perturb_l_inf(image, signs, l_inf)
@staticmethod
def gradient_error(network, line, transformed):
"""Returns the mean error in the gradient assumption made by FGSM.
Effectively, this computes the relative error between the gradient
computed at @line["start"] and the gradient within each linear region
on @line. The Linearity Hypothesis works if these are all similar, i.e.
if this function returns a small value.
"""
start = line["start"]
end = line["end"]
delta = end - start
label = line["target_fgsm_label"]
start_gradient = network.compute_gradients([start], label)[0]
region_lengths = []
midpoint_preimages = []
for start_ratio, end_ratio in zip(transformed[:-1], transformed[1:]):
midpoint_ratio = (start_ratio + end_ratio) / 2.0
midpoint_preimages.append(
line["start"] + (midpoint_ratio * delta))
region_lengths.append(end_ratio - start_ratio)
along_gradients = network.compute_gradients(midpoint_preimages, label)
gradient_errors = [np.mean(np.abs((start_gradient - along_gradient) /
(along_gradient + 1e-12)))
for along_gradient in along_gradients]
return np.average(gradient_errors, weights=region_lengths)
def run_for_network(self, network_name, dataset):
"""Runs experiments for a particular network.
@dataset should be the result of calling Experiment.load_input_data.
"""
l_inf = 0.03
network = self.load_network(network_name)
process = dataset["process"]
inputs = dataset["raw_inputs"]
labels = dataset["labels"]
# First, we generate line descriptions for each line we want to pass
# through this network.
lines = []
for i, image in enumerate(inputs):
label = labels[i]
actual_label = np.argmax(network.compute([process(image)])[0])
if actual_label != label:
# We only consider points which are correctly classified by the
# network.
continue
fgsm_label = (label + 1) % 10
targets = {
"fgsm": self.fgsm(network, image, fgsm_label, l_inf, process),
}
for j in range(4):
targets["random%d" % j] = self.random_perturbation(
image, l_inf, ((20 * i) + j))
image_dir = "%s/%03d" % (network_name, i)
# Save the original image.
self.record_artifact(self.rgbify_image(image),
"%s/start" % image_dir, "rgb_image")
# Then make lines to & save all of the other target images.
for target_name, target_image in targets.items():
target_image_key = "%s/%s" % (image_dir, target_name)
self.record_artifact(self.rgbify_image(image),
target_image_key, "rgb_image")
target_label = np.argmax(
network.compute([process(target_image)])[0])
length = np.linalg.norm(process(target_image) - process(image))
lines.append({
"image": i,
"artifact_dir": image_dir,
"start": process(image),
"end": process(target_image),
"type": target_name,
"start_label": label,
"end_label": target_label,
"target_fgsm_label": fgsm_label,
"length": length,
"gradient_error": None,
})
transformed_lines = network.exactlines(
[(line["start"], line["end"]) for line in lines],
# We want post to get the 'break' points in the analysis.
compute_preimages=False, include_post=True)
for line, transformed in zip(lines, transformed_lines):
# transformed is just a Numpy array of endpoint ratios because we
# passed compute_preimages=False and include_post=False
artifact_key = "%s/%s_transformed" % (
line["artifact_dir"], line["type"])
self.record_artifact(transformed, artifact_key, "pickle")
# We use the gradients from the FGSM direction for the inline
# mention of the "extended experiment."
if line["type"] == "fgsm":
line["gradient_error"] = self.gradient_error(network, line,
transformed[0])
line_data_key = "%s/line_data" % network_name
line_data_out = self.begin_csv(
line_data_key,
["image", "artifact_dir", "type", "start_label", "end_label",
"target_fgsm_label", "gradient_error", "length"],
extrasaction="ignore")
for line in lines:
self.write_csv(line_data_out, line)
self.record_artifact(line_data_key, line_data_key, "csv")
def run(self):
"""Runs the linearity-hypothesis experiment.
In the run phase, we select a number of lines (some shared by all
models and some model-specific), then transform them and record the
relevant statistics.
"""
dataset_types = ["cifar10", "mnist"]
network_types = ["relu_convsmall",
"relu_convsmall_diffai",
"relu_convsmall_pgd"]
n_networks = input("Number of models (# or * for all): ")
n_networks = -1 if n_networks == "*" else int(n_networks)
networks_finished = 0
network_names = []
for dataset_type in dataset_types:
dataset_name = "%s_test" % dataset_type
for network_type in network_types:
network_name = "%s_%s" % (dataset_type, network_type)
network_names.append(network_name)
print("Running Experiment for Network:", network_name)
dataset = self.load_input_data(dataset_name,
"conv" in network_name)
self.run_for_network(network_name, dataset)
networks_finished += 1
if networks_finished == n_networks:
break
if networks_finished == n_networks:
break
self.record_artifact(network_names, "networks", "pickle")
@staticmethod
def group_by_image(lines):
"""Groups lines by their starting ("natural") image.
"""
groups = {}
for line in lines:
try:
groups[int(line["image"])].append(line)
except KeyError:
groups[int(line["image"])] = [line]
return groups
def compute_density(self, line):
"""Computes the density for a line.
"""
endpoints, postimages = self.read_artifact(
"{artifact_dir}/{type}_transformed".format(**line))
return len(endpoints) / float(line["length"])
def classification_regions(self, line):
"""Computes the classification regions for a line.
"""
transformed = self.read_artifact(
"{artifact_dir}/{type}_transformed".format(**line))
classifier = LinesClassifier.from_exactlines([transformed])
return classifier.compute()[0]
@staticmethod
def corresponding_line(line, other_lines):
"""Finds a line in @other_lines that corresponds to @line.
This is used for, eg., finding the same random-line in another model's
results.
"""
try:
return next(other_line for other_line in other_lines
if (other_line["type"] == line["type"] and
other_line["image"] == line["image"]))
except StopIteration:
return None
def analyze(self):
"""Analyzes the result of the experiment.
"""
networks = self.read_artifact("networks")
# First, we get the FGSM/Random data for all networks.
print("Table 3 Data (FGSM/Random):")
for network in networks:
print("Network:", network)
lines = self.read_artifact("%s/line_data" % network)
groups = self.group_by_image(lines)
ratios = []
for image_lines in groups.values():
# There should only be one FGSM line.
fgsm_line = next(line for line in image_lines
if line["type"] == "fgsm")
fgsm_density = self.compute_density(fgsm_line)
# There may be many random lines.
random_lines = [line for line in image_lines
if line["type"].startswith("random")]
random_densities = map(self.compute_density, random_lines)
ratios.extend(fgsm_density / random_density
for random_density in random_densities)
print("\t%s" % self.summarize(ratios))
print("")
print("Table 4 Data (Normal/{DiffAI,PGD})")
normal_networks = [network for network in networks
if not ("pgd" in network or "diffai" in network)]
for normal_network in normal_networks:
print("Normal Network:", normal_network)
normal_lines = self.read_artifact("%s/line_data" % normal_network)
normal_fgsm_lines = [line for line in normal_lines
if line["type"] == "fgsm"]
normal_random_lines = [line for line in normal_lines
if line["type"].startswith("random")]
for suffix in ["diffai", "pgd"]:
other_network = "%s_%s" % (normal_network, suffix)
if other_network not in networks:
continue
other_lines = self.read_artifact("%s/line_data" % other_network)
other_fgsm_lines = [line for line in other_lines
if line["type"] == "fgsm"]
other_random_lines = [line for line in other_lines
if line["type"].startswith("random")]
ratios = []
for normal_line in normal_fgsm_lines:
other_line = self.corresponding_line(normal_line,
other_fgsm_lines)
if other_line is None:
continue
ratios.append(self.compute_density(normal_line) /
self.compute_density(other_line))
print("\tFGSM Normal/%s:" % suffix, self.summarize(ratios))
ratios = []
for normal_line in normal_random_lines:
other_line = self.corresponding_line(normal_line,
other_random_lines)
if other_line is None:
continue
ratios.append(self.compute_density(normal_line) /
self.compute_density(other_line))
print("\tRandom Normal/%s:" % suffix, self.summarize(ratios))
# Reproduce the gradient-error percentage.
gradient_errors = [float(line["gradient_error"])
for line in normal_fgsm_lines]
print("\tGradient error:", self.summarize(gradient_errors))
print("Generating versions of Figure 4...")
self.figure_4(networks)
return True
def figure_4(self, networks):
"""Builds expository figures for all valid lines.
"""
if not ("cifar10_relu_convsmall" in networks and
"cifar10_relu_convsmall_diffai" in networks):
print("CIFAR10 convsmall {normal,diffai} networks not run, " +
"can't make Figure 4")
return
normal_net = "cifar10_relu_convsmall"
diffai_net = "cifar10_relu_convsmall_diffai"
normal_lines = self.read_artifact("%s/line_data" % normal_net)
diffai_lines = self.read_artifact("%s/line_data" % diffai_net)
normal_images = set(int(line["image"]) for line in normal_lines)
diffai_images = set(int(line["image"]) for line in diffai_lines)
both_images = normal_images & diffai_images
for image in both_images:
normal_fgsm = next(line for line in normal_lines
if (int(line["image"]) == image and
line["type"] == "fgsm"))
normal_random = next(line for line in normal_lines
if (int(line["image"]) == image and
line["type"] == "random3"))
diffai_random = self.corresponding_line(normal_random, diffai_lines)
fig4a, fig4b = self.figure_4_for_lines(normal_fgsm, normal_random,
diffai_random)
self.record_artifact(fig4a, "figure_4a_%03d" % image, "svg")
self.record_artifact(fig4b, "figure_4b_%03d" % image, "svg")
def figure_4_for_lines(self, normal_fgsm, normal_random, diffai_random):
"""Builds the expository figure for a particular image.
"""
fig4a = svgwrite.Drawing(profile="full")
fig4b = svgwrite.Drawing(profile="full")
def add_line(fig, line, left, top, width, height, color,
break_color="blue"):
endpoints, _ = self.read_artifact(
"{artifact_dir}/{type}_transformed".format(**line))
mid = top + (height / 2)
fig.add(fig.line((left, mid), (left + width, mid),
stroke=color, stroke_width=0.5))
for endpoint in endpoints[1:-1]:
x = left + (endpoint * width)
fig.add(fig.line((x, top), (x, top + height),
stroke=color, stroke_width=0.5))
breaks = self.classification_regions(line)[0][1:]
for break_distance in breaks:
x = left + (break_distance[0] * width)
fig.add(fig.line((x, top - 8), (x, top + height + 8),
stroke=break_color, stroke_width=1.0))
line_width = 125
vpad = 3
def add_start_image(fig, line, y):
start_key = "{artifact_dir}/start".format(**line)
start_image = self.read_artifact(start_key)
start_datauri = self.image_to_datauri(start_image)
fig.add(fig.image(start_datauri, (0, y), size=(32, 32)))
def add_end_image(fig, line, y, labels, label_colors):
end_key = "{artifact_dir}/{type}".format(**line)
end_image = self.read_artifact(end_key)
end_datauri = self.image_to_datauri(end_image)
left = 32 + (2 * vpad) + line_width
fig.add(fig.image(end_datauri, (left, y), size=(32, 32)))
for i, label in enumerate(labels):
fig.add(fig.text(label, insert=(left + 32 + 3, y + (i * 6) + 5),
font_size="5", fill=label_colors[i]))
labels = ["Airplane", "Automobile", "Bird", "Cat", "Deer", "Dog",
"Frog", "Horse", "Ship", "Truck"]
# 4a top line is Normal-FGSM.
add_start_image(fig4a, normal_fgsm, 16)
fig4a.add(fig4a.text(labels[int(normal_fgsm["start_label"])],
insert=(12, 16 + 38), font_size="5"))
add_end_image(fig4a, normal_fgsm, 0, [
"Training Method: Normal",
"Direction: FGSM +3%",
"Density: %0.2f" % self.compute_density(normal_fgsm),
"Label: %s" % labels[int(normal_fgsm["end_label"])],
], ["black", "black", "black", "black"])
add_line(fig4a, normal_fgsm, 32 + vpad, 9, line_width, 14, "black")
# 4a bottom line is Normal-Random
add_end_image(fig4a, normal_random, 32 + vpad, [
"Training Method: Normal",
"Direction: Random +3%",
"Density: %0.2f" % self.compute_density(normal_random),
"Label: %s" % labels[int(normal_random["end_label"])],
], ["black", "black", "black", "black"])
add_line(fig4a, normal_random, 32 + vpad, 35 + 9, line_width, 14,
"black")
# 4b top line is Normal-Random.
add_start_image(fig4b, normal_fgsm, 16)
fig4b.add(fig4b.text(labels[int(normal_fgsm["start_label"])],
insert=(12, 16 + 38), font_size="5"))
add_end_image(fig4b, normal_fgsm, 0, [
"Training Method: Normal",
"Direction: Random +3%",
"Density: %0.2f" % self.compute_density(normal_random),
"Label: %s" % labels[int(normal_random["end_label"])],
], ["black", "black", "black", "black"])
add_line(fig4b, normal_random, 32 + vpad, 9, line_width, 14, "black")
# 4b bottom line is DiffAI-Random
add_end_image(fig4b, diffai_random, 32 + vpad, [
"Training Method: DiffAI",
"Direction: Random +3%",
"Density: %0.2f" % self.compute_density(diffai_random),
"Label: %s" % labels[int(diffai_random["end_label"])],
], ["green", "green", "green", "green"])
add_line(fig4b, diffai_random, 32 + vpad, 35 + 9, line_width, 14,
"green")
return fig4a, fig4b
if __name__ == "__main__":
LinearityHypothesisExperiment("linearity_hypothesis").main()