-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomputeDSTInter.m
137 lines (114 loc) · 5.18 KB
/
computeDSTInter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
function [dsTNeuron,dstVecforPair,prL] = computeDSTInter(dataA,dataB)
fDim = 6;
dsTNeuron = 0;
noPath1 = size(dataA,1);
noPath2 = size(dataB,1);
dstCell = cell(noPath1,noPath2); % Noting distance between a pair of paths
distanceMat = zeros(noPath1,noPath2);
for k = 1:noPath1
tort1 = dataA{k,1};
bifur1 = dataA{k,2};
caul1 = dataA{k,3};
conc1 = dataA{k,4};
bOrder1 = dataA{k,5} ; %branch order = hierarchy (more hierarchy = less important)
bOrder1 = 1./(bOrder1+0.1);
bOrder1 = bOrder1./sum(bOrder1);
segL1 = dataA{k,6};
compt1 = dataA{k,7};
for m = 1:noPath2
tort2 = dataB{m,1};
bifur2 = dataB{m,2};
caul2 = dataB{m,3};
conc2 = dataB{m,4};
bOrder2 = dataB{m,5};
bOrder2 = 1./(bOrder2+0.1);
bOrder2 = bOrder2./sum(bOrder2);
segL2 = dataB{m,6};
compt2 = dataB{m,7};
%% standard branch order
%tortuosity
maxTort = max([tort1;tort2])+0.0001;
minTort = min([tort1;tort2]);
tort11 = (tort1-minTort)/(maxTort-minTort);
tort2 = (tort2-minTort)/(maxTort-minTort);
if length(tort11) >= length(tort2)
tort2 = [tort2;zeros(length(tort11)-length(tort2),1)] ;
dstTort = norm((tort1-tort2).*bOrder1,2);
elseif length(tort2) > length(tort1)
tort11 = [tort11;zeros(length(tort2)-length(tort11),1)];
dstTort = norm((tort11-tort2).*bOrder2,2);
end
%bifurAngle
maxBifur = max([bifur1;bifur2])+0.0001;
minBifur = min([bifur1;bifur2]);
bifur11 = (bifur1-minBifur)/(maxBifur-minBifur);
bifur2 = (bifur2-minBifur)/(maxBifur-minBifur);
if length(bifur11) >= length(bifur2)
bifur2 = [bifur2;zeros(length(bifur11)-length(bifur2),1)];
dstBifur = norm((bifur11-bifur2).*bOrder1,2);
elseif length(bifur2) > length(bifur11)
bifur11 = [bifur11;zeros(length(bifur2)-length(bifur11),1)];
dstBifur = norm((bifur11-bifur2).*bOrder2,2);
end
%caulescence
maxCaul = max([caul1;caul2])+0.0001;
minCaul = min([caul1;caul2]);
caul11 = (caul1-minCaul)/(maxCaul-minCaul);
caul2 = (caul2-minCaul)/(maxCaul-minCaul);
if length(caul11) >= length(caul2)
caul2 = [caul2;zeros(length(caul11)-length(caul2),1)];
dstCaul = norm((caul11-caul2).*bOrder1,2);
elseif length(caul2) > length(caul11)
caul11 = [caul11;zeros(length(caul2)-length(caul11),1)];
dstCaul = norm((caul11-caul2).*bOrder2,2);
end
%concurrence
maxConc = max([conc1;conc2])+0.0001;
minConc = min([conc1;conc2]);
conc11 = (conc1-minConc)/(maxConc-minConc);
conc2 = (conc2-minConc)/(maxConc-minConc);
if length(conc11) >= length(conc2)
conc2 = [conc2;zeros(length(conc11)-length(conc2),1)];
dstConc = norm((conc11-conc2).*bOrder1,2);
elseif length(conc2) > length(conc11)
conc11 = [conc11;zeros(length(conc2)-length(conc11),1)];
dstConc = norm((conc11-conc2).*bOrder2,2);
end
%segment length
maxSegL = mean([segL1;segL2])+0.0001;
minSegL = std([segL1;segL2]);
segL11 = (segL1-minSegL)/(maxSegL-minSegL);
segL2 = (segL2-minSegL)/(maxSegL-minSegL);
if length(segL11) >= length(segL2)
segL2 = [segL2;zeros(length(segL11)-length(segL2),1)];
dstSegL = norm((segL11-segL2).*bOrder1,2)/sqrt(length(segL1));
elseif length(segL2) > length(segL11)
segL11 = [segL11;zeros(length(segL2)-length(segL11),1)];
dstSegL = norm((segL11-segL2).*bOrder2,2)/sqrt(length(segL2));
end
%competition
maxCompt = max([compt1;compt2])+0.0001;
minCompt = min([compt1;compt2]);
compt11 = (compt1-minCompt)/(maxCompt-minCompt);
compt2 = (compt2-minCompt)/(maxCompt-minCompt);
if length(compt11) >= length(compt2)
compt2 = [compt2;zeros(length(compt11)-length(compt2),1)];
dstCompt = norm((compt11-compt2).*bOrder1,2);
elseif length(compt2) > length(compt11)
compt11 = [compt11;zeros(length(compt2)-length(compt11),1)];
dstCompt = norm((compt11-compt2).*bOrder2,2);
end
%% distance
% User can try other non-linear functions
dstVec = [dstTort;dstBifur;dstCaul;dstConc;dstSegL;dstCompt];
dstCell{k,m} = dstVec;
distanceMat(k,m) = 1/(1+exp(-[0.0304 0.0372 0.0417 0.1786 0.6489 0.0633]*dstVec));
end
end
% distanceMat
[dsTNeuron,prL] = distanceNeuronNew(distanceMat,dataA,dataB);
dstVecforPair = zeros(fDim,size(prL,1));
for nn = 1:size(prL,1)
dstVecforPair(:,nn) = dstCell{prL(nn,1),prL(nn,2)};
end
end