forked from bintangkurniawanpp/face-recognition-unej
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentation.py
264 lines (201 loc) · 8.34 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Common imports
import os
import numpy as np
# Visualization
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
# TensorFlow imports
# may differs from version to versions
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Dataset information
image_folder = os.path.join('data', 'train')
img_height, img_width = 250, 250 # size of images
num_classes = 3 # abi, mcdr, bintang
dataset = keras.preprocessing.image_dataset_from_directory(
image_folder,
seed=42,
image_size=(img_height, img_width),
label_mode='categorical',
shuffle=True)
class_names = dataset.class_names
# Helper function to get classname of the image
def get_classname(class_names, mask):
'''
Returns an element of the array 'class_names' with the index
where the maximum value from the 'mask' array is located.
Used to get classname with categorical labels.
Parameters:
class_names (array-like): Target array
mask (array-like): Mask array, elements must be numbers
Returns:
One of the element from 'class_names'
>>> get_classname(['first', 'second'], [0, 1])
'second'
>>> get_classname(['first', 'second', third], [1, 0, 0])
'first'
'''
assert len(class_names) == len(
mask), "The arrays must be of the same length"
return class_names[np.array(mask).argmax(axis=0)]
sqrt_img = 2 # images per row / col.
# The square root of the total number of images shown
plt.figure(figsize=(8, 8))
for images, labels in dataset.take(3):
for index in range(sqrt_img**2):
# grid 'sqrt_img' x 'sqrt_img'
plt.subplot(sqrt_img, sqrt_img, index + 1)
plt.imshow(images[index] / 255)
class_name = get_classname(class_names, labels[index])
plt.title("Class: {}".format(class_name))
plt.axis("off")
"""
DATA AUGMENTATION
"""
batch_size = 16
train_datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
brightness_range=(0.7, 1),
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
vertical_flip=False,
fill_mode='nearest')
train_generator = train_datagen.flow_from_directory(
image_folder,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
# To see next augmented image
image, label = train_generator.next()
plt.figure(figsize=(6, 6))
plt.imshow(image[0] / 255) # first image from batch
plt.title("Augmented image from ImageDataGenerator")
plt.axis("off")
n = 10
aug_image_folder = os.path.join('datasets', 'face_dataset_train_aug_images')
if not os.path.exists(aug_image_folder):
os.makedirs(aug_image_folder) # create folder if doesn't exist
# Note that the content of the folder is not deleted and files are added at every step
train_generator.save_to_dir = aug_image_folder
train_generator.save_format = 'jpg'
# If 'save_to_dir' is set, `next()` method
# will generate `batch_size` images each time
# and save them to 'save_to_dir' folder
for i in range(n):
print("Step {} of {}".format(i+1, n))
train_generator.next()
print("\tGenerate {} random images".format(train_generator.batch_size))
print("\nTotal number images generated = {}".format(n*train_generator.batch_size))
n = 5
aug_image_folder = os.path.join('datasets', 'face_dataset_train_aug_images')
if not os.path.exists(aug_image_folder):
os.makedirs(aug_image_folder) # create folder if doesn't exist
# Note that the content of the folder is not deleted and files are added at every step
train_datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
brightness_range=(0.7, 1),
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
vertical_flip=False,
fill_mode='nearest')
image_folder_to_generate = os.path.join(image_folder, 'abizar')
image_folder_to_save = os.path.join(aug_image_folder, 'abizar')
if not os.path.exists(image_folder_to_save):
os.makedirs(image_folder_to_save) # create folder if doesn't exist
i = 0
total = len(os.listdir(image_folder_to_generate)) # number of files in folder
for filename in os.listdir(image_folder_to_generate):
print("Step {} of {}".format(i+1, total))
# for each image in folder: read it
image_path = os.path.join(image_folder_to_generate, filename)
image = keras.preprocessing.image.load_img(
image_path, target_size=(img_height, img_width, 3))
image = keras.preprocessing.image.img_to_array(
image) # from image to array
# shape from (250, 250, 3) to (1, 250, 250, 3)
image = np.expand_dims(image, axis=0)
# create ImageDataGenerator object for it
current_image_gen = train_datagen.flow(image,
batch_size=1,
save_to_dir=image_folder_to_save,
save_prefix=filename,
save_format="jpg")
# generate n samples
count = 0
for image in current_image_gen: # accessing the object saves the image to disk
count += 1
if count == n: # n images were generated
break
print('\tGenerate {} samples for file {}'.format(n, filename))
i += 1
print("\nTotal number images generated = {}".format(n*total))
image_folder_to_generate = os.path.join(image_folder, 'bintang')
image_folder_to_save = os.path.join(aug_image_folder, 'bintang')
if not os.path.exists(image_folder_to_save):
os.makedirs(image_folder_to_save) # create folder if doesn't exist
i = 0
total = len(os.listdir(image_folder_to_generate)) # number of files in folder
for filename in os.listdir(image_folder_to_generate):
print("Step {} of {}".format(i+1, total))
# for each image in folder: read it
image_path = os.path.join(image_folder_to_generate, filename)
image = keras.preprocessing.image.load_img(
image_path, target_size=(img_height, img_width, 3))
image = keras.preprocessing.image.img_to_array(
image) # from image to array
# shape from (250, 250, 3) to (1, 250, 250, 3)
image = np.expand_dims(image, axis=0)
# create ImageDataGenerator object for it
current_image_gen = train_datagen.flow(image,
batch_size=1,
save_to_dir=image_folder_to_save,
save_prefix=filename,
save_format="jpg")
# generate n samples
count = 0
for image in current_image_gen: # accessing the object saves the image to disk
count += 1
if count == n: # n images were generated
break
print('\tGenerate {} samples for file {}'.format(n, filename))
i += 1
print("\nTotal number images generated = {}".format(n*total))
image_folder_to_generate = os.path.join(image_folder, 'muchdor')
image_folder_to_save = os.path.join(aug_image_folder, 'muchdor')
if not os.path.exists(image_folder_to_save):
os.makedirs(image_folder_to_save) # create folder if doesn't exist
i = 0
total = len(os.listdir(image_folder_to_generate)) # number of files in folder
for filename in os.listdir(image_folder_to_generate):
print("Step {} of {}".format(i+1, total))
# for each image in folder: read it
image_path = os.path.join(image_folder_to_generate, filename)
image = keras.preprocessing.image.load_img(
image_path, target_size=(img_height, img_width, 3))
image = keras.preprocessing.image.img_to_array(
image) # from image to array
# shape from (250, 250, 3) to (1, 250, 250, 3)
image = np.expand_dims(image, axis=0)
# create ImageDataGenerator object for it
current_image_gen = train_datagen.flow(image,
batch_size=1,
save_to_dir=image_folder_to_save,
save_prefix=filename,
save_format="jpg")
# generate n samples
count = 0
for image in current_image_gen: # accessing the object saves the image to disk
count += 1
if count == n: # n images were generated
break
print('\tGenerate {} samples for file {}'.format(n, filename))
i += 1
print("\nTotal number images generated = {}".format(n*total))