-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLayerPano.py
493 lines (363 loc) · 18.1 KB
/
LayerPano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import os
import datetime
import warnings
from random import randint
from loguru import logger
warnings.filterwarnings(action='ignore')
import imageio
import numpy as np
import math
from PIL import Image
from tqdm import tqdm
import torch
import torch.nn.functional as F
from plyfile import PlyData
from torchvision.transforms import ToPILImage, ToTensor
import utils.pano_utils.Equirec2Perspec as E2P
import utils.pano_utils.multi_Perspec2Equirec as m_P2E
from arguments import GSParams, CameraParams, ModelHiddenParams
from gaussian_renderer import render
from scene import Scene, GaussianModel, LayerGaussian
from utils.loss import l1_loss, ssim, lpips_loss
from utils.camera import load_json
from utils.depth_utils import colorize
from utils.image import psnr
from utils.paint_utils import functbl
from utils.trajectory import get_pcdGenPoses
from scene.cameras import MiniCam2
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
get_kernel = lambda p: torch.ones(1, 1, p * 2 + 1, p * 2 + 1).to('cuda')
t2np = lambda x: (x[0].permute(1, 2, 0).clamp_(0, 1) * 255.0).to(torch.uint8).detach().cpu().numpy()
np2t = lambda x: (torch.as_tensor(x).to(torch.float32).permute(2, 0, 1) / 255.0)[None, ...].to('cuda')
pad_mask = lambda x, padamount=1: t2np(
F.conv2d(np2t(x[..., None]), get_kernel(padamount), padding=padamount))[..., 0].astype(bool)
def check_cuda_memo(info="", device=0):
print(f"================= cuda memory info {info} ==================")
total_memory = torch.cuda.get_device_properties(device).total_memory
allocated_memory = torch.cuda.memory_allocated(device)
cached_memory = torch.cuda.memory_reserved(device)
free_memory = total_memory - (allocated_memory + cached_memory)
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
print(f"Cached memory: {cached_memory / 1024**2:.2f} MB")
print(f"Free memory: {free_memory / 1024**2:.2f} MB")
print(f"=====================================================\n")
class LayerPano:
def __init__(self, save_dir=None):
self.init_logger()
self.save_dir = save_dir
self.opt = GSParams()
self.cam = CameraParams()
self.hyper = ModelHiddenParams()
self.device = 'cuda'
self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
bg_color = [1, 1, 1] #[0, 0, 0]
self.background = torch.tensor(bg_color, dtype=torch.float32, device='cuda')
self.step=0
self.is_upper_mask_aggressive = True
self.data_path = os.path.join(self.save_dir, 'data')
self.pers_path = os.path.join(self.data_path, 'perspective_imgs')
os.makedirs(self.data_path, exist_ok=True)
os.makedirs(self.pers_path, exist_ok=True)
def save_img(self, x, path):
if np.max(x) > 1:
x = x.astype(np.uint8)
else:
x = (x*255).astype(np.uint8)
image = Image.fromarray(x)
image.save(path)
def init_logger(self):
logger.remove() # Remove default logger
log_format = "<green>{time:YYYY-MM-DD HH:mm:ss}</green> <level>{message}</level>"
logger.add(lambda msg: tqdm.write(msg, end=""), colorize=True, format=log_format)
def count_layer(self, base_dir):
count = 0
for item in os.listdir(base_dir):
item_path = os.path.join(base_dir, item)
if os.path.isdir(item_path) and item.startswith("layer"):
count += 1
return count
def readImg(self, path):
img = Image.open(path).convert('RGB')
img = np.array(img)
return img
def create(self, input_dir, outlier_thresh,):
input_dir = os.path.join(input_dir,'traindata')
n_layer = self.count_layer(input_dir)
# n_layer = 1
print('Layers of Pano:', n_layer)
self.outlier_thresh = outlier_thresh
print('Outlier Thresh', self.outlier_thresh)
gaussians_prev = None
for layer_idx in range(n_layer):
self.traindata = self.load_pcd_and_perspectives(input_dir, layer_idx)
if layer_idx == 0:
n_iterations = 3001
else:
n_iterations = 2001
self.gaussians = LayerGaussian(self.opt.sh_degree, outlier_thresh=self.outlier_thresh)
self.scene = Scene(self.traindata, gaussians_prev, self.gaussians, self.opt)
self.training(layer_idx, n_iterations)
self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
gaussians_prev = self.gaussians.wrap_gaussian()
outfile = self.save_ply(os.path.join(self.save_dir, f'gsplat_layer{layer_idx}.ply'))
return outfile
def save_ply(self, fpath=None, type='3D'):
if type == '3D':
self.gaussians.save_ply(fpath)
else:
if not os.path.exists(fpath):
self.gaussians_4d.save_ply(fpath)
else:
self.gaussians_4d.load_ply(fpath)
return fpath
def render_video(self, preset, phi=0):
if preset == '360':
preset='pers2pano'
poses, theta_list, phi_list = get_pcdGenPoses(preset, {'n_views': 80, 'phi': phi})
else:
poses = get_pcdGenPoses(preset)
videopath = os.path.join(self.save_dir, 'results', f'{preset}_v{phi}.mp4')
depthpath = os.path.join(self.save_dir, 'results', f'depth_{preset}_v{phi}.mp4')
views = []
for i in range(len(poses)):
pose = poses[i]
cur_cam = MiniCam2(pose, self.cam.W, self.cam.H, self.cam.fovx, self.cam.fovy)
views.append(cur_cam)
framelist = []
depthlist = []
dmin, dmax = 1e8, -1e8
iterable_render = views
for view in iterable_render:
results = render(view, self.gaussians, self.opt, self.background)
frame, depth = results['render'], results['depth']
framelist.append(
np.round(frame.permute(1,2,0).detach().cpu().numpy().clip(0,1)*255.).astype(np.uint8))
depth = -(depth * (depth > 0)).detach().cpu().numpy()
dmin_local = depth.min().item()
dmax_local = depth.max().item()
if dmin_local < dmin:
dmin = dmin_local
if dmax_local > dmax:
dmax = dmax_local
depthlist.append(depth)
# depthlist = [colorize(depth, vmin=dmin, vmax=dmax) for depth in depthlist]
depthlist = [colorize(depth) for depth in depthlist]
if not os.path.exists(videopath):
imageio.mimwrite(videopath, framelist, fps=10, quality=8)
if not os.path.exists(depthpath):
imageio.mimwrite(depthpath, depthlist, fps=10, quality=8)
return videopath, depthpath
def render_video(self, preset, phi=0):
if preset == '360':
preset='pers2pano'
poses, theta_list, phi_list = get_pcdGenPoses(preset, {'n_views': 80, 'phi': phi})
else:
poses = get_pcdGenPoses(preset)
videopath = os.path.join(self.save_dir, 'results', f'{preset}_v{phi}.mp4')
depthpath = os.path.join(self.save_dir, 'results', f'depth_{preset}_v{phi}.mp4')
views = []
for i in range(len(poses)):
pose = poses[i]
cur_cam = MiniCam2(pose, self.cam.W, self.cam.H, self.cam.fovx, self.cam.fovy)
views.append(cur_cam)
framelist = []
depthlist = []
dmin, dmax = 1e8, -1e8
iterable_render = views
for view in iterable_render:
results = render(view, self.gaussians, self.opt, self.background)
frame, depth = results['render'], results['depth']
framelist.append(
np.round(frame.permute(1,2,0).detach().cpu().numpy().clip(0,1)*255.).astype(np.uint8))
depth = -(depth * (depth > 0)).detach().cpu().numpy()
dmin_local = depth.min().item()
dmax_local = depth.max().item()
if dmin_local < dmin:
dmin = dmin_local
if dmax_local > dmax:
dmax = dmax_local
depthlist.append(depth)
# depthlist = [colorize(depth, vmin=dmin, vmax=dmax) for depth in depthlist]
depthlist = [colorize(depth) for depth in depthlist]
if not os.path.exists(videopath):
imageio.mimwrite(videopath, framelist, fps=10, quality=8)
if not os.path.exists(depthpath):
imageio.mimwrite(depthpath, depthlist, fps=10, quality=8)
return videopath, depthpath
def training(self, layer_idx, n_iterations):
if not self.scene:
raise('Build 3D Scene First!')
self.opt.iterations = n_iterations
iterable_gauss = range(1, self.opt.iterations + 1)
# iterable_gauss = range(1, n_iterations + 1)
tb_writer = self.prepare_logger()
progress_bar = tqdm(range(0, n_iterations), desc="Training progress")
ema_loss_for_log = 0.0
# iter_start = torch.cuda.Event(enable_timing = True)
# iter_end = torch.cuda.Event(enable_timing = True)
for iteration in tqdm(iterable_gauss):
self.gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
self.gaussians.oneupSHdegree()
# Pick a random Camera
viewpoint_stack = self.scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# import pdb; pdb.set_trace()
# Render
render_pkg = render(viewpoint_cam, self.gaussians, self.opt, self.background)
image, mask, depth = render_pkg['render'], render_pkg['mask'], render_pkg['depth'] #[c,h,w]
viewspace_point_tensor, visibility_filter, radii = render_pkg['viewspace_points'], render_pkg['visibility_filter'], render_pkg['radii']
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
if iteration % 1000 == 1:
print('l1 loss:', Ll1)
loss = (1.0 - self.opt.lambda_dssim) * Ll1 + self.opt.lambda_dssim * (1.0 - ssim(image, gt_image)) #+ 0.5 * Ldepth
loss.backward()
with torch.no_grad():
# Densification
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
loss_dict = {
"Loss": f"{ema_loss_for_log:.{5}f}",
"Points": f"{len(self.gaussians.get_xyz)}"
}
progress_bar.set_postfix(loss_dict)
progress_bar.update(10)
if iteration == n_iterations:
progress_bar.close()
if iteration < self.opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
self.gaussians.update_identity_mask()
visibility_filter_part = radii[self.gaussians.identity_mask] > 0
self.gaussians.max_radii2D[visibility_filter_part] = torch.max(
self.gaussians.max_radii2D[visibility_filter_part], radii[self.gaussians.identity_mask][visibility_filter_part])
self.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter_part, self.gaussians.identity_mask)
if iteration > self.opt.densify_from_iter and iteration % self.opt.densification_interval == 0:
size_threshold = 20 if iteration > self.opt.opacity_reset_interval else None
self.gaussians.densify_and_prune(
self.opt.densify_grad_threshold, 0.01, self.scene.cameras_extent, size_threshold)
if (iteration % self.opt.opacity_reset_interval == 0
or (self.opt.white_background and iteration == self.opt.densify_from_iter)
):
self.gaussians.reset_opacity()
# Optimizer step
if iteration < self.opt.iterations:
self.gaussians.optimizer.step()
self.gaussians.optimizer.zero_grad(set_to_none = True)
# self.compose_pano()
def compose_pano(self):
to_pil = ToPILImage()
phi_all = [0, -45, 45, -80, 80]
cam_fov90 = CameraParams(fov=90)
pers_img = []
F_T_P = []
for phi in phi_all:
pers_img_tmp = []
F_T_P_tmp = []
persdata, theta_list, phi_list = get_pcdGenPoses("pers2pano",{'n_views': 10, 'phi': phi })
n_pers = len(persdata)
path = os.path.join(self.pers_path, f'pers_phi{phi}');os.makedirs(path, exist_ok=True)
for i in range(n_pers):
pose = persdata[i]
cur_cam = MiniCam2(pose, cam_fov90.W, cam_fov90.H, cam_fov90.fovx, cam_fov90.fovy)
render_pkg = render(cur_cam, self.gaussians, self.opt, self.background, render_only=True)
#image:[3,H,W]
image = render_pkg['render'] # depth[1, 512, 512]
image = to_pil(image.cpu()); image.save(os.path.join(path, f'pers_{i}.jpg'))
image = np.array(image)
pers_img.append(image)
F_T_P.append([cam_fov90.fov_deg, theta_list[i], phi_list[i]])
pers_img_tmp.append(image)
F_T_P_tmp.append([cam_fov90.fov_deg, theta_list[i], phi_list[i]])
ee = m_P2E.Perspective(pers_img, F_T_P)
pano_img, pano_mask = ee.GetEquirec(1024, 2048, return_mask=True)
self.save_img(pano_img, os.path.join(path, f'pano_{phi}.jpg'))
ee = m_P2E.Perspective(pers_img_tmp, F_T_P_tmp)
pano_img, pano_mask = ee.GetEquirec(1024, 2048, return_mask=True)
self.save_img(pano_img, os.path.join(path, f'pano_tmp_{phi}.jpg'))
ee = m_P2E.Perspective(pers_img, F_T_P)
pano_img, pano_mask = ee.GetEquirec(1024, 2048, return_mask=True)
self.save_img(pano_img, os.path.join(self.save_dir, f'pano.jpg'))
self.save_img(pano_mask, os.path.join(self.save_dir, f'pano_mask.jpg'))
def getmask(self, img):
# img [h,w,3]
mask = np.sum(img, axis=-1)
mask = np.array((mask > 0)).astype(np.float32)
return mask
def pano2pers(self, pano, viewangle, N, time=None, name=None):
pers_img=[]
if not name:
name = 'pers_split'
equ = E2P.Equirectangular(pano)
for i in range(N):
theta = 360 - (viewangle/N)*i
img = equ.GetPerspective(self.cam.fov_deg, theta, 0, self.cam.H, self.cam.W)
img = np.clip(img, 0, 255).astype(np.uint8)
if time:
pil_img = Image.fromarray(img); pil_img.save(os.path.join(self.save_dir, f'{name}{time}_{i}.jpg'))
else:
pil_img = Image.fromarray(img); pil_img.save(os.path.join(self.save_dir, f'{name}_{i}.jpg'))
pers_img.append(np.array(pil_img))
return pers_img
def load_pcd_and_perspectives(self, parent_dir, idx):
load_dir = os.path.join(parent_dir, f'layer{idx}')
pcd_points, pcd_colors = self.load_pcd(os.path.join(load_dir, f'pcd_rgb_layer{idx}.ply'))
_, pcd_masks = self.load_pcd(os.path.join(load_dir, f'pcd_mask_layer{idx}.ply'))
pcd_colors = pcd_colors / pcd_colors.max()
pcd_masks = pcd_masks / pcd_masks.max()
assert pcd_points.shape[0] == pcd_masks.shape[0]
if len(pcd_points) > 3000000:
ratio = len(pcd_points) // 3000000 + 1
print('Warning: PointCloud is too large {}, downsampling by ratio of {}'.format(len(pcd_points),ratio))
pcd_points = pcd_points[::ratio]
pcd_colors = pcd_colors[::ratio]
pcd_masks = pcd_masks[::ratio]
print('[INFO] !!! Loaded {} points from Layer {}.'.format(pcd_points.shape, idx))
num_frames = 24
frames = []
for frame_idx in range(num_frames):
pers_rgb = Image.open(os.path.join(load_dir, f'frames/rgb_{frame_idx}.png'))
pose_gs = np.load(os.path.join(load_dir, f'frames/transform_matrix_{frame_idx}.npy'))
frames.append({'image': pers_rgb, 'transform_matrix': pose_gs})
W, H = frames[-1]['image'].size
self.cam.W = W
self.cam.H = H
self.cam.fovx = math.radians(90)
self.cam.fovy = self.cam.H * self.cam.fovx / self.cam.W
self.cam.fov = (self.cam.fovx, self.cam.fovy)
self.cam.fov_deg = 90
return {
'fov': self.cam.fov_deg,
'W': self.cam.W,
'H': self.cam.H,
'pcd_points': pcd_points,
'pcd_colors': pcd_colors,
'pcd_masks': pcd_masks,
'frames': frames
}
def load_pcd(self, pcd_path):
plydata = PlyData.read(pcd_path)
vertices = plydata['vertex']
x, y, z = vertices['x'], vertices['y'], vertices['z']
r, g, b = vertices['red'], vertices['green'], vertices['blue']
points = np.stack([x,y,z], axis=-1)
colors = np.stack([r,g,b], axis=-1)
return points, colors
def prepare_logger(self):
# with open(os.path.join(self.save_dir, "cfg_args"), 'w') as cfg_log_f:
# cfg_log_f.write(str(Namespace(**vars(self.opt))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(self.save_dir)
else:
print("Tensorboard not available: not logging progress")
return tb_writer