-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathpreprocessor.py
48 lines (34 loc) · 1.32 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
import numpy as np
def preprocess_image(image, train_config):
pnoise = train_config["poisson_noise_n"]
gnoise = train_config["gauss_noise_n"]
if pnoise is not None:
image = preproc_poisson_noise(image, pnoise)
if gnoise is not None:
image = preproc_gaussian_noise(image, gnoise)
return image
def get_possion_noise(image):
"""Add poisson noise.
This function approximate posson noise upto 2nd order.
Assume images were in 0-255, and converted to the range of -1 to 1.
"""
n = tf.random_normal(shape=tf.shape(image), mean=0.0, stddev=1.0)
# strength ~ sqrt image value in 255, divided by 127.5 to convert
# back to -1, 1 range.
n_str = tf.sqrt(image + 1.0) / np.sqrt(127.5)
return tf.multiply(n, n_str)
def get_gaussian_noise(image):
return tf.random_normal(shape=tf.shape(image), mean=0.0, stddev=1.0)
def preproc_poisson_noise(image, n):
nn = np.random.uniform(0, n)
return image + nn * get_possion_noise(image)
def preproc_gaussian_noise(image, n):
# Scale N so that it is meaningful in 0-255 scale.
nn = np.random.uniform(0, n)
nn = nn / 127.5
return image + nn * get_possion_noise(image)
def preproc_color(image, n):
n = tf.to_float(n) / 127.5 - 1
image += n
return tf.clip_by_value(image, -1.0, 1.0)