-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathcompute_prob_dynImg.py
50 lines (37 loc) · 1.55 KB
/
compute_prob_dynImg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# the reference of dynamic images: http://www.egavves.com/data/cvpr2016bilen.pdf
import sys
# correctly install the caffe and pycaffe, and set up the path
sys.path.append('../../python')
import caffe
import numpy as np
import pdb
dynImgValidationProbabilities = {}
dynImgValidationFeatures = {}
prototxt_file = 'dynImgs.prototxt'
model_file_dyn = 'dynImgs.caffemodel'
if not os.access(model_file_dyn, os.W_OK):
weight_url = 'http://moments.csail.mit.edu/moments_models/' + model_file_dyn
os.system('wget ' + weight_url)
def init_model(prototxt_file, model_file):
caffe.set_mode_gpu()
caffe.set_device(0)
net = caffe.Net(prototxt_file, model_file, caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_mean('data', np.array([111,111,111]))
transformer.set_transpose('data', (2,0,1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_raw_scale('data', 255.0)
net.blobs['data'].reshape(1,3,224,224)
return net, transformer
def generate_image_feats(images, mode):
ims = np.array([transformer_dyn.preprocess('data', im) for im in images], dtype=np.float32)
net_dyn.blobs['data'].reshape(*ims.shape)
net_dyn.blobs['data'].data[...] = ims
out = net_dyn.forward()
preds = out['probs'][0:ims.shape[0]]
return preds
net_dyn, transformer_dyn = init_model(prototxt_file, model_file_dyn)
im = 'sample_dynImg_stacking.jpg'
images_dyn= [caffe.io.load_image(im)]
preds_dyn = np.squeeze(generate_image_feats(images_dyn, 'dyn'))
pdb.set_trace()