-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifiers.py
158 lines (134 loc) · 5.38 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
import torch
from urllib.request import urlopen
import csv
def text_to_style(*, model, tokenizer, texts, device, model_type='style'):
embeds = []
for t in texts:
inputs = tokenizer(t, return_tensors='pt')
inputs = {k: v.to(device) for k, v in inputs.items()}
embeds.append(
get_style_embedding(
model=model,
input_tokens=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
model_type=model_type,
)
)
return embeds
def load_style_model():
tokenizer = AutoTokenizer.from_pretrained('AnnaWegmann/Style-Embedding')
model = AutoModel.from_pretrained('AnnaWegmann/Style-Embedding')
embeds = get_word_embeddings(model)
return model, tokenizer, embeds
def load_uar_distill_model(model_path):
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
model = AutoModelForSequenceClassification.from_pretrained(
'distilroberta-base', num_labels=128
)
model.load_state_dict(torch.load(model_path))
embeds = get_word_embeddings(model)
return model, tokenizer, embeds
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
] # First element of model_output contains all token embeddings
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def get_style_embedding(
*,
model,
inputs_embeds=None,
input_tokens=None,
attention_mask=None,
model_type='style',
):
assert inputs_embeds is not None or input_tokens is not None
if inputs_embeds is not None:
if attention_mask is None:
attention_mask = torch.ones(*inputs_embeds.shape[:-1]).to(
inputs_embeds.device
) # this may be why I have issues when i insert padding tokens
attention_mask = attention_mask.to(inputs_embeds.device)
if model_type == 'style':
return mean_pooling(
model(inputs_embeds=inputs_embeds, attention_mask=attention_mask),
attention_mask=attention_mask,
)
elif model_type == 'uar':
return model.general_encode(
inputs_embeds=inputs_embeds, attention_mask=attention_mask
)
elif model_type == 'luar_distill':
return model(inputs_embeds=inputs_embeds, attention_mask=attention_mask)[0]
else:
raise ValueError(f'Unknown model type {model_type}')
else:
if attention_mask is None:
attention_mask = torch.ones(*input_tokens.shape).to(input_tokens.device)
attention_mask = attention_mask.to(input_tokens.device)
if model_type == 'style':
return mean_pooling(
model(input_tokens, attention_mask=attention_mask),
attention_mask=attention_mask,
)
elif model_type == 'uar':
return model.general_encode(
input_ids=input_tokens, attention_mask=attention_mask
)
elif model_type == 'luar_distill':
return model(input_ids=input_tokens, attention_mask=attention_mask)[0]
else:
raise ValueError(f'Unknown model type {model_type}')
def get_word_embeddings(model):
state_dict = model.state_dict()
params = []
for key in state_dict:
if 'word_embeddings' in key:
params.append((key, state_dict[key]))
assert len(params) == 1, f'Found {params}'
return params[0][1]
def load_sentiment_model(task='sentiment'):
# Tasks:
# emoji, emotion, hate, irony, offensive, sentiment
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
labels = []
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
with urlopen(mapping_link) as f:
html = f.read().decode('utf-8').split("\n")
csvreader = csv.reader(html, delimiter='\t')
labels = [row[1] for row in csvreader if len(row) > 1]
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
embeddings = get_word_embeddings(model)
return model, tokenizer, embeddings, labels
def load_formality_model():
MODEL = f"cointegrated/roberta-base-formality"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
labels = []
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
embeddings = get_word_embeddings(model)
return model, tokenizer, embeddings, labels
def use_sentiment_model(model, tokenizer, text):
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
logits = output.logits
return logits
def compute_style_loss(
embeds, model, target_embeds, attention_mask=None, model_type='style'
):
current = get_style_embedding(
inputs_embeds=embeds,
model=model,
attention_mask=attention_mask,
model_type=model_type,
)
loss = 0
for target_embed in target_embeds:
loss += 1 - torch.nn.CosineSimilarity()(current, target_embed)
return loss / len(target_embeds)