forked from JayTwoLab/qbox2dl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArbiter.cpp
207 lines (171 loc) · 4.91 KB
/
Arbiter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erin Catto makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "Arbiter.h"
#include "Body.h"
#include "World.h"
Arbiter::Arbiter(Body* b1, Body* b2)
{
if (b1 < b2)
{
body1 = b1;
body2 = b2;
}
else
{
body1 = b2;
body2 = b1;
}
numContacts = Collide(contacts, body1, body2);
friction = sqrtf(body1->friction * body2->friction);
glPointSize(4.0f);
glColor3f(1.0f, 0.0f, 0.0f);
glBegin(GL_POINTS);
for (int i = 0; i < numContacts; ++i)
{
glVertex2f(contacts[i].position.x, contacts[i].position.y);
}
glEnd();
glPointSize(1.0f);
}
void Arbiter::Update(Contact* newContacts, int numNewContacts)
{
Contact mergedContacts[2];
for (int i = 0; i < numNewContacts; ++i)
{
Contact* cNew = newContacts + i;
int k = -1;
for (int j = 0; j < numContacts; ++j)
{
Contact* cOld = contacts + j;
if (cNew->feature.value == cOld->feature.value)
{
k = j;
break;
}
}
if (k > -1)
{
Contact* c = mergedContacts + i;
Contact* cOld = contacts + k;
*c = *cNew;
if (World::warmStarting)
{
c->Pn = cOld->Pn;
c->Pt = cOld->Pt;
c->Pnb = cOld->Pnb;
}
else
{
c->Pn = 0.0f;
c->Pt = 0.0f;
c->Pnb = 0.0f;
}
}
else
{
mergedContacts[i] = newContacts[i];
}
}
for (int i = 0; i < numNewContacts; ++i)
contacts[i] = mergedContacts[i];
numContacts = numNewContacts;
}
void Arbiter::PreStep(float inv_dt)
{
const float k_allowedPenetration = 0.01f;
float k_biasFactor = World::positionCorrection ? 0.2f : 0.0f;
for (int i = 0; i < numContacts; ++i)
{
Contact* c = contacts + i;
Vec2 r1 = c->position - body1->position;
Vec2 r2 = c->position - body2->position;
// Precompute normal mass, tangent mass, and bias.
float rn1 = Dot(r1, c->normal);
float rn2 = Dot(r2, c->normal);
float kNormal = body1->invMass + body2->invMass;
kNormal += body1->invI * (Dot(r1, r1) - rn1 * rn1) + body2->invI * (Dot(r2, r2) - rn2 * rn2);
c->massNormal = 1.0f / kNormal;
Vec2 tangent = Cross(c->normal, 1.0f);
float rt1 = Dot(r1, tangent);
float rt2 = Dot(r2, tangent);
float kTangent = body1->invMass + body2->invMass;
kTangent += body1->invI * (Dot(r1, r1) - rt1 * rt1) + body2->invI * (Dot(r2, r2) - rt2 * rt2);
c->massTangent = 1.0f / kTangent;
c->bias = -k_biasFactor * inv_dt * Min(0.0f, c->separation + k_allowedPenetration);
if (World::accumulateImpulses)
{
// Apply normal + friction impulse
Vec2 P = c->Pn * c->normal + c->Pt * tangent;
body1->velocity -= body1->invMass * P;
body1->angularVelocity -= body1->invI * Cross(r1, P);
body2->velocity += body2->invMass * P;
body2->angularVelocity += body2->invI * Cross(r2, P);
}
}
}
void Arbiter::ApplyImpulse()
{
Body* b1 = body1;
Body* b2 = body2;
for (int i = 0; i < numContacts; ++i)
{
Contact* c = contacts + i;
c->r1 = c->position - b1->position;
c->r2 = c->position - b2->position;
// Relative velocity at contact
Vec2 dv = b2->velocity + Cross(b2->angularVelocity, c->r2) - b1->velocity - Cross(b1->angularVelocity, c->r1);
// Compute normal impulse
float vn = Dot(dv, c->normal);
float dPn = c->massNormal * (-vn + c->bias);
if (World::accumulateImpulses)
{
// Clamp the accumulated impulse
float Pn0 = c->Pn;
c->Pn = Max(Pn0 + dPn, 0.0f);
dPn = c->Pn - Pn0;
}
else
{
dPn = Max(dPn, 0.0f);
}
// Apply contact impulse
Vec2 Pn = dPn * c->normal;
b1->velocity -= b1->invMass * Pn;
b1->angularVelocity -= b1->invI * Cross(c->r1, Pn);
b2->velocity += b2->invMass * Pn;
b2->angularVelocity += b2->invI * Cross(c->r2, Pn);
// Relative velocity at contact
dv = b2->velocity + Cross(b2->angularVelocity, c->r2) - b1->velocity - Cross(b1->angularVelocity, c->r1);
Vec2 tangent = Cross(c->normal, 1.0f);
float vt = Dot(dv, tangent);
float dPt = c->massTangent * (-vt);
if (World::accumulateImpulses)
{
// Compute friction impulse
float maxPt = friction * c->Pn;
// Clamp friction
float oldTangentImpulse = c->Pt;
c->Pt = Clamp(oldTangentImpulse + dPt, -maxPt, maxPt);
dPt = c->Pt - oldTangentImpulse;
}
else
{
float maxPt = friction * dPn;
dPt = Clamp(dPt, -maxPt, maxPt);
}
// Apply contact impulse
Vec2 Pt = dPt * tangent;
b1->velocity -= b1->invMass * Pt;
b1->angularVelocity -= b1->invI * Cross(c->r1, Pt);
b2->velocity += b2->invMass * Pt;
b2->angularVelocity += b2->invI * Cross(c->r2, Pt);
}
}