Burn Torch backend
This crate provides a Torch backend for Burn utilizing the
tch-rs
crate, which offers a Rust interface to the
PyTorch C++ API.
The backend supports CPU (multithreaded), CUDA (multiple GPUs), and MPS devices (MacOS).
tch-rs
requires the C++ PyTorch library (LibTorch) to
be available on your system.
By default, the CPU distribution is installed for LibTorch v2.6.0 as required by tch-rs
.
CUDA
To install the latest compatible CUDA distribution, set the TORCH_CUDA_VERSION
environment
variable before the tch-rs
dependency is retrieved with cargo
.
export TORCH_CUDA_VERSION=cu124
On Windows:
$Env:TORCH_CUDA_VERSION = "cu124"
Note:
tch
doesn't expose the downloaded libtorch directory on Windows when using the automatic download feature, so thetorch_cuda.dll
cannot be detected properly during build. In this case, you can set theLIBTORCH
environment variable to point to thelibtorch/
folder intorch-sys
OUT_DIR
(or move the downloaded lib to a different folder and point to it).
For example, running the validation sample for the first time could be done with the following commands:
export TORCH_CUDA_VERSION=cu124
cargo run --bin cuda --release
Important: make sure your driver version is compatible with the selected CUDA version. A CUDA Toolkit installation is not required since LibTorch ships with the appropriate CUDA runtimes. Having the latest driver version is recommended, but you can always take a look at the toolkit driver version table or minimum required driver version (limited feature-set, might not work with all operations).
Once your installation is complete, you should be able to build/run your project. You can also
validate your installation by running the appropriate cpu
, cuda
or mps
sample as below.
cargo run --bin cpu --release
cargo run --bin cuda --release
cargo run --bin mps --release
Note: no MPS distribution is available for automatic download at this time, please check out the manual instructions.
To install tch-rs
with a different LibTorch distribution, you will have to manually download the
desired LibTorch distribution. The instructions are detailed in the sections below for each
platform.
Compute Platform | CPU | GPU | Linux | MacOS | Windows | Android | iOS | WASM |
---|---|---|---|---|---|---|---|---|
CPU | Yes | No | Yes | Yes | Yes | Yes | Yes | No |
CUDA | Yes [1] | Yes | Yes | No | Yes | No | No | No |
Metal (MPS) | No | Yes | No | Yes | No | No | No | No |
Vulkan | Yes | Yes | Yes | Yes | Yes | Yes | No | No |
[1] The LibTorch CUDA distribution also comes with CPU support.
🐧 Linux
First, download the LibTorch CPU distribution.
wget -O libtorch.zip https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.6.0%2Bcpu.zip
unzip libtorch.zip
Then, point to that installation using the LIBTORCH
and LD_LIBRARY_PATH
environment variables
before building burn-tch
or a crate which depends on it.
export LIBTORCH=/absolute/path/to/libtorch/
export LD_LIBRARY_PATH=/absolute/path/to/libtorch/lib:$LD_LIBRARY_PATH
🍎 Mac
First, download the LibTorch CPU distribution.
wget -O libtorch.zip https://download.pytorch.org/libtorch/cpu/libtorch-macos-x86_64-2.6.0.zip
unzip libtorch.zip
Then, point to that installation using the LIBTORCH
and DYLD_LIBRARY_PATH
environment variables
before building burn-tch
or a crate which depends on it.
export LIBTORCH=/absolute/path/to/libtorch/
export DYLD_LIBRARY_PATH=/absolute/path/to/libtorch/lib:$DYLD_LIBRARY_PATH
🪟 Windows
First, download the LibTorch CPU distribution.
wget https://download.pytorch.org/libtorch/cpu/libtorch-win-shared-with-deps-2.6.0%2Bcpu.zip -OutFile libtorch.zip
Expand-Archive libtorch.zip
Then, set the LIBTORCH
environment variable and append the library to your path as with the
PowerShell commands below before building burn-tch
or a crate which depends on it.
$Env:LIBTORCH = "/absolute/path/to/libtorch/"
$Env:Path += ";/absolute/path/to/libtorch/"
LibTorch 2.6.0 currently includes binary distributions with CUDA 11.8, 12.4 or 12.6 runtimes. The
manual installation instructions are detailed below for CUDA 12.6, but can be applied to the other
CUDA versions by replacing cu126
with the corresponding version string (e.g., cu118
or cu124
).
🐧 Linux
First, download the LibTorch CUDA 12.6 distribution.
wget -O libtorch.zip https://download.pytorch.org/libtorch/cu126/libtorch-cxx11-abi-shared-with-deps-2.6.0%2Bcu126.zip
unzip libtorch.zip
Then, point to that installation using the LIBTORCH
and LD_LIBRARY_PATH
environment variables
before building burn-tch
or a crate which depends on it.
export LIBTORCH=/absolute/path/to/libtorch/
export LD_LIBRARY_PATH=/absolute/path/to/libtorch/lib:$LD_LIBRARY_PATH
Note: make sure your CUDA installation is in your PATH
and LD_LIBRARY_PATH
.
🪟 Windows
First, download the LibTorch CUDA 12.6 distribution.
wget https://download.pytorch.org/libtorch/cu126/libtorch-win-shared-with-deps-2.6.0%2Bcu126.zip -OutFile libtorch.zip
Expand-Archive libtorch.zip
Then, set the LIBTORCH
environment variable and append the library to your path as with the
PowerShell commands below before building burn-tch
or a crate which depends on it.
$Env:LIBTORCH = "/absolute/path/to/libtorch/"
$Env:Path += ";/absolute/path/to/libtorch/"
There is no official LibTorch distribution with MPS support at this time, so the easiest alternative is to use a PyTorch installation. This requires a Python installation.
Note: MPS acceleration is available on MacOS 12.3+.
pip install torch==2.6.0 numpy==1.26.4 setuptools
export LIBTORCH_USE_PYTORCH=1
export DYLD_LIBRARY_PATH=/path/to/pytorch/lib:$DYLD_LIBRARY_PATH
Note: if venv
is used, it should be activated during coding and building, or the compiler may
not work properly.
For a simple example, check out any of the test programs in src/bin/
. Each program
sets the device to use and performs a simple element-wise addition.
For a more complete example using the tch
backend, take a loot at the
Burn mnist example.
Try .cargo/config.toml
(cargo book).
Instead of setting the environments in your shell, you can manually add them to your
.cargo/config.toml
:
[env]
LD_LIBRARY_PATH = "/absolute/path/to/libtorch/lib"
LIBTORCH = "/absolute/path/to/libtorch/libtorch"
Or use bash commands below:
mkdir .cargo
cat <<EOF > .cargo/config.toml
[env]
LD_LIBRARY_PATH = "/absolute/path/to/libtorch/lib:$LD_LIBRARY_PATH"
LIBTORCH = "/absolute/path/to/libtorch/libtorch"
EOF
This will automatically include the old LD_LIBRARY_PATH
value in the new one.