-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcttc-nr-multi-flow-qos-sched-dpp_proof.cc
485 lines (404 loc) · 19.8 KB
/
cttc-nr-multi-flow-qos-sched-dpp_proof.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#include "ns3/antenna-module.h"
#include "ns3/applications-module.h"
#include "ns3/buildings-module.h"
#include "ns3/config-store-module.h"
#include "ns3/core-module.h"
#include "ns3/flow-monitor-module.h"
#include "ns3/internet-apps-module.h"
#include "ns3/internet-module.h"
#include "ns3/mobility-module.h"
#include "ns3/network-module.h"
#include "ns3/nr-module.h"
#include "ns3/point-to-point-module.h"
using namespace ns3;
NS_LOG_COMPONENT_DEFINE("CttcNrSimpleQosSchedProof");
int
main(int argc, char* argv[])
{
// LogComponentEnable("NrMacSchedulerNs3", LOG_LEVEL_DEBUG);
LogComponentEnable("NrMacSchedulerOfdmaDPP", LOG_LEVEL_ALL);
LogComponentEnable("NrMacSchedulerUeInfoDPP", LOG_LEVEL_ALL);
uint16_t gNbNum = 1;
uint16_t ueNumPergNb = 2;
Time simTime = MilliSeconds(402);
Time udpAppStartTime = MilliSeconds(400);
uint16_t numerology = 0;
double centralFrequency = 4e9;
double bandwidth = 10e6;
double totalTxPower = 43;
bool enableOfdma = false;
std::string schedulerType = "DPP";
bool enableQoSLcScheduler = false;
uint8_t priorityTrafficScenario = 0; // default is saturation
uint16_t mcsTable = 2;
bool enablePdcpDiscarding = false;
uint32_t discardTimerMs = 0;
CommandLine cmd;
cmd.AddValue("priorityTrafficScenario",
"The traffic scenario for the case of priority. Can be 0: saturation"
"or 1: medium-load",
priorityTrafficScenario);
cmd.AddValue("simTime", "Simulation time", simTime);
cmd.AddValue("numerology", "The numerology to be used", numerology);
cmd.AddValue("centralFrequency", "The system frequency to be used", centralFrequency);
cmd.AddValue("bandwidth", "The system bandwidth to be used", bandwidth);
cmd.AddValue("totalTxPower",
"total tx power that will be proportionally assigned to"
" bands, CCs and bandwidth parts depending on each BWP bandwidth ",
totalTxPower);
cmd.AddValue("enableOfdma",
"If set to true it enables Ofdma scheduler. Default value is false (Tdma)",
enableOfdma),
cmd.AddValue("schedulerType",
"PF: Proportional Fair (default), RR: Round-Robin, Qos",
schedulerType),
cmd.AddValue("enableQoSLcScheduler",
"If set to true, it enables the QoS LC scheduler. Default is RR (false)",
enableQoSLcScheduler),
cmd.AddValue("enablePdcpDiscarding",
"Whether to enable PDCP TX discarding",
enablePdcpDiscarding),
cmd.AddValue("discardTimerMs",
"Discard timer value in milliseconds to use for all the flows",
discardTimerMs);
cmd.Parse(argc, argv);
Config::SetDefault("ns3::LteRlcUm::MaxTxBufferSize", UintegerValue(999999999));
Config::SetDefault("ns3::LteRlcUm::EnablePdcpDiscarding", BooleanValue(enablePdcpDiscarding));
Config::SetDefault("ns3::LteRlcUm::DiscardTimerMs", UintegerValue(discardTimerMs));
/*
* Create the scenario. In our examples, we heavily use helpers that setup
* the gnbs and ue following a pre-defined pattern. Please have a look at the
* GridScenarioHelper documentation to see how the nodes will be distributed.
*/
int64_t randomStream = 1;
GridScenarioHelper gridScenario;
gridScenario.SetRows(1);
gridScenario.SetColumns(gNbNum);
gridScenario.SetHorizontalBsDistance(5.0);
gridScenario.SetVerticalBsDistance(5.0);
gridScenario.SetBsHeight(1.5);
gridScenario.SetUtHeight(1.5);
// must be set before BS number
gridScenario.SetSectorization(GridScenarioHelper::SINGLE);
gridScenario.SetBsNumber(gNbNum);
gridScenario.SetUtNumber(ueNumPergNb * gNbNum);
gridScenario.SetScenarioHeight(3); // Create a 3x3 scenario where the UE will
gridScenario.SetScenarioLength(3); // be distribuited.
randomStream += gridScenario.AssignStreams(randomStream);
gridScenario.CreateScenario();
uint32_t udpPacketSize1;
uint32_t udpPacketSize2;
uint32_t udpPacketSize3;
uint32_t lambda1 = 1000;
uint32_t lambda2 = 1000;
uint32_t lambda3 = 1000;
if (priorityTrafficScenario == 0) // saturation
{
udpPacketSize1 = 3000;
udpPacketSize2 = 3000;
udpPacketSize3 = 3000;
}
else if (priorityTrafficScenario == 1) // medium-load
{
udpPacketSize1 = 3000;
udpPacketSize2 = 1252;
udpPacketSize3 = 1252;
}
else
{
NS_ABORT_MSG("The priorityTrafficScenario chosen is not correct. "
"Please choose among 0: saturation and 1: medium-load");
}
/*
* Create two different NodeContainer for the different traffic type.
* In ueLowLat we will put the UEs that will receive low-latency traffic,
* while in ueVoice we will put the UEs that will receive the voice traffic.
*
* Lo cambio para poder poner 3 UEs configurables!
*/
NodeContainer ue1flowContainer;
NodeContainer ue2flowContainer;
NodeContainer ue3flowContainer;
for (uint32_t j = 0; j < gridScenario.GetUserTerminals().GetN(); ++j)
{
Ptr<Node> ue = gridScenario.GetUserTerminals().Get(j);
if (j == 0)
{
ue1flowContainer.Add(ue);
}
else
{
j % 2 == 0 ? ue3flowContainer.Add(ue) : ue2flowContainer.Add(ue);
}
}
if (priorityTrafficScenario == 1)
{
lambda1 = 1000 / ue1flowContainer.GetN();
lambda2 = 1000 / ue2flowContainer.GetN();
lambda3 = 1000 / ue2flowContainer.GetN();
}
// setup the nr simulation
Ptr<NrPointToPointEpcHelper> epcHelper = CreateObject<NrPointToPointEpcHelper>();
Ptr<IdealBeamformingHelper> idealBeamformingHelper = CreateObject<IdealBeamformingHelper>();
Ptr<NrHelper> nrHelper = CreateObject<NrHelper>();
// Put the pointers inside nrHelper
nrHelper->SetBeamformingHelper(idealBeamformingHelper);
nrHelper->SetEpcHelper(epcHelper);
nrHelper->SetPathlossAttribute("ShadowingEnabled", BooleanValue(false));
epcHelper->SetAttribute("S1uLinkDelay", TimeValue(MilliSeconds(0)));
Config::SetDefault("ns3::ThreeGppChannelModel::UpdatePeriod", TimeValue(MilliSeconds(0)));
nrHelper->SetChannelConditionModelAttribute("UpdatePeriod", TimeValue(MilliSeconds(0)));
std::stringstream scheduler;
std::string subType;
subType = enableOfdma == false ? "Tdma" : "Ofdma";
scheduler << "ns3::NrMacScheduler" << subType << schedulerType;
std::cout << "Scheduler: " << scheduler.str() << std::endl;
nrHelper->SetSchedulerTypeId(TypeId::LookupByName(scheduler.str()));
if (enableQoSLcScheduler)
{
nrHelper->SetSchedulerAttribute("SchedLcAlgorithmType",
TypeIdValue(NrMacSchedulerLcQos::GetTypeId()));
}
// Error Model: gNB and UE with same spectrum error model.
std::string errorModel = "ns3::NrEesmIrT" + std::to_string(mcsTable);
nrHelper->SetDlErrorModel(errorModel);
nrHelper->SetUlErrorModel(errorModel);
// Both DL and UL AMC will have the same model behind.
nrHelper->SetGnbDlAmcAttribute("AmcModel", EnumValue(NrAmc::ErrorModel));
nrHelper->SetGnbUlAmcAttribute("AmcModel", EnumValue(NrAmc::ErrorModel));
// Beamforming method
idealBeamformingHelper->SetAttribute("BeamformingMethod",
TypeIdValue(DirectPathBeamforming::GetTypeId()));
// Antennas for all the UEs
nrHelper->SetUeAntennaAttribute("NumRows", UintegerValue(1));
nrHelper->SetUeAntennaAttribute("NumColumns", UintegerValue(1));
nrHelper->SetUeAntennaAttribute("AntennaElement",
PointerValue(CreateObject<IsotropicAntennaModel>()));
// Antennas for all the gNbs
nrHelper->SetGnbAntennaAttribute("NumRows", UintegerValue(1));
nrHelper->SetGnbAntennaAttribute("NumColumns", UintegerValue(1));
nrHelper->SetGnbAntennaAttribute("AntennaElement",
PointerValue(CreateObject<IsotropicAntennaModel>()));
/*
* Setup the configuration of the spectrum. One operation band is deployed
* with 1 component carrier (CC), automatically generated by the ccBwpManager
*/
BandwidthPartInfoPtrVector allBwps;
CcBwpCreator ccBwpCreator;
OperationBandInfo band;
const uint8_t numOfCcs = 1;
auto bandMask = NrHelper::INIT_PROPAGATION | NrHelper::INIT_CHANNEL;
// Create the configuration for the CcBwpHelper. SimpleOperationBandConf creates
// a single BWP per CC
CcBwpCreator::SimpleOperationBandConf bandConf(centralFrequency,
bandwidth,
numOfCcs,
BandwidthPartInfo::UMi_StreetCanyon_LoS);
bandConf.m_numBwp = 1;
// By using the configuration created, it is time to make the operation band
band = ccBwpCreator.CreateOperationBandContiguousCc(bandConf);
nrHelper->InitializeOperationBand(&band, bandMask);
// nrHelper->InitializeOperationBand(&band);
allBwps = CcBwpCreator::GetAllBwps({band});
double x = pow(10, totalTxPower / 10);
Packet::EnableChecking();
Packet::EnablePrinting();
uint32_t bwpIdUe1 = 0;
uint32_t bwpIdUe2 = 0;
uint32_t bwpIdUe3 = 0;
// gNb routing between Bearer and bandwidh part
nrHelper->SetGnbBwpManagerAlgorithmAttribute("GBR_LIVE_UL_76", UintegerValue(bwpIdUe1));
nrHelper->SetGnbBwpManagerAlgorithmAttribute("GBR_LIVE_UL_76", UintegerValue(bwpIdUe2));
nrHelper->SetGnbBwpManagerAlgorithmAttribute("GBR_LIVE_UL_76", UintegerValue(bwpIdUe3));
// Ue routing between Bearer and bandwidth part
nrHelper->SetUeBwpManagerAlgorithmAttribute("GBR_LIVE_UL_76", UintegerValue(bwpIdUe1));
nrHelper->SetUeBwpManagerAlgorithmAttribute("GBR_LIVE_UL_76", UintegerValue(bwpIdUe2));
nrHelper->SetUeBwpManagerAlgorithmAttribute("GBR_LIVE_UL_76", UintegerValue(bwpIdUe3));
/*
* We have configured the attributes we needed. Now, install and get the pointers
* to the NetDevices, which contains all the NR stack:
*/
NetDeviceContainer enbNetDev =
nrHelper->InstallGnbDevice(gridScenario.GetBaseStations(), allBwps);
NetDeviceContainer ue1flowNetDev = nrHelper->InstallUeDevice(ue1flowContainer, allBwps);
NetDeviceContainer ue2flowNetDev = nrHelper->InstallUeDevice(ue2flowContainer, allBwps);
NetDeviceContainer ue3flowNetDev = nrHelper->InstallUeDevice(ue3flowContainer, allBwps);
randomStream += nrHelper->AssignStreams(enbNetDev, randomStream);
randomStream += nrHelper->AssignStreams(ue1flowNetDev, randomStream);
randomStream += nrHelper->AssignStreams(ue2flowNetDev, randomStream);
nrHelper->GetGnbPhy(enbNetDev.Get(0), 0)->SetAttribute("Numerology", UintegerValue(numerology));
nrHelper->GetGnbPhy(enbNetDev.Get(0), 0)->SetAttribute("TxPower", DoubleValue(10 * log10(x)));
// When all the configuration is done, explicitly call UpdateConfig ()
for (auto it = enbNetDev.Begin(); it != enbNetDev.End(); ++it)
{
DynamicCast<NrGnbNetDevice>(*it)->UpdateConfig();
}
for (auto it = ue1flowNetDev.Begin(); it != ue1flowNetDev.End(); ++it)
{
DynamicCast<NrUeNetDevice>(*it)->UpdateConfig();
}
for (auto it = ue2flowNetDev.Begin(); it != ue2flowNetDev.End(); ++it)
{
DynamicCast<NrUeNetDevice>(*it)->UpdateConfig();
}
for (auto it = ue3flowNetDev.Begin(); it != ue3flowNetDev.End(); ++it)
{
DynamicCast<NrUeNetDevice>(*it)->UpdateConfig();
}
// create the internet and install the IP stack on the UEs
// get SGW/PGW and create a single RemoteHost
Ptr<Node> pgw = epcHelper->GetPgwNode();
NodeContainer remoteHostContainer;
remoteHostContainer.Create(1);
Ptr<Node> remoteHost = remoteHostContainer.Get(0);
InternetStackHelper internet;
internet.Install(remoteHostContainer);
// connect a remoteHost to pgw. Setup routing too
PointToPointHelper p2ph;
p2ph.SetDeviceAttribute("DataRate", DataRateValue(DataRate("100Gb/s")));
p2ph.SetDeviceAttribute("Mtu", UintegerValue(2500));
p2ph.SetChannelAttribute("Delay", TimeValue(Seconds(0.000)));
NetDeviceContainer internetDevices = p2ph.Install(pgw, remoteHost);
Ipv4AddressHelper ipv4h;
Ipv4StaticRoutingHelper ipv4RoutingHelper;
ipv4h.SetBase("1.0.0.0", "255.0.0.0");
Ipv4InterfaceContainer internetIpIfaces = ipv4h.Assign(internetDevices);
Ptr<Ipv4StaticRouting> remoteHostStaticRouting =
ipv4RoutingHelper.GetStaticRouting(remoteHost->GetObject<Ipv4>());
remoteHostStaticRouting->AddNetworkRouteTo(Ipv4Address("7.0.0.0"), Ipv4Mask("255.0.0.0"), 1);
internet.Install(gridScenario.GetUserTerminals());
Ipv4InterfaceContainer ue1FlowIpIface;
Ipv4InterfaceContainer ue2FlowIpIface;
Ipv4InterfaceContainer ue3FlowIpIface;
ue1FlowIpIface = epcHelper->AssignUeIpv4Address(NetDeviceContainer(ue1flowNetDev));
ue2FlowIpIface = epcHelper->AssignUeIpv4Address(NetDeviceContainer(ue2flowNetDev));
ue3FlowIpIface = epcHelper->AssignUeIpv4Address(NetDeviceContainer(ue3flowNetDev));
// Set the default gateway for the UEs
for (uint32_t j = 0; j < gridScenario.GetUserTerminals().GetN(); ++j)
{
Ptr<Ipv4StaticRouting> ueStaticRouting = ipv4RoutingHelper.GetStaticRouting(
gridScenario.GetUserTerminals().Get(j)->GetObject<Ipv4>());
ueStaticRouting->SetDefaultRoute(epcHelper->GetUeDefaultGatewayAddress(), 1);
}
// attach UEs to the closest gNB
nrHelper->AttachToClosestEnb(ue1flowNetDev, enbNetDev);
nrHelper->AttachToClosestEnb(ue2flowNetDev, enbNetDev);
nrHelper->AttachToClosestEnb(ue3flowNetDev, enbNetDev);
/*
* Traffic part. Install two kind of traffic: low-latency and voice, each
* identified by a particular source port.
*/
uint16_t dlPortUe1flow = 1234;
uint16_t dlPortUe2flow = 1235;
uint16_t dlPortUe3flow = 1236;
ApplicationContainer serverApps;
// The sink will always listen to the specified ports
UdpServerHelper dlPacketSinkUe1flow(dlPortUe1flow);
UdpServerHelper dlPacketSinkUe2flow(dlPortUe2flow);
UdpServerHelper dlPacketSinkUe3flow(dlPortUe3flow);
// The server, that is the application which is listening, is installed in the UE
serverApps.Add(dlPacketSinkUe1flow.Install(ue1flowContainer));
serverApps.Add(dlPacketSinkUe2flow.Install(ue2flowContainer));
serverApps.Add(dlPacketSinkUe3flow.Install(ue3flowContainer));
/*
* Configure attributes for the different generators, using user-provided
* parameters for generating a CBR traffic
*
* UE with 1 flow configuration and object creation:
*/
/******************************************************************************/
UdpClientHelper dlClientUe1flow;
dlClientUe1flow.SetAttribute("RemotePort", UintegerValue(dlPortUe1flow));
dlClientUe1flow.SetAttribute("MaxPackets", UintegerValue(0xFFFFFFFF));
dlClientUe1flow.SetAttribute("PacketSize", UintegerValue(udpPacketSize1));
dlClientUe1flow.SetAttribute("Interval", TimeValue(Seconds(1.0 / lambda1)));
GbrQosInformation qosUe1flow;
qosUe1flow.gbrDl = 15e6; // Downlink GBR
// The bearer that will carry Ue 2 Flows DC GBR traffic
EpsBearer ue1flowDcGbrBearer(EpsBearer::GBR_LIVE_UL_76, qosUe1flow);
// The filter for the 2 Flows DC GBR traffic
Ptr<EpcTft> ue1FlowTft = Create<EpcTft>();
EpcTft::PacketFilter dlpfUe1flow;
dlpfUe1flow.localPortStart = dlPortUe1flow;
dlpfUe1flow.localPortEnd = dlPortUe1flow;
ue1FlowTft->Add(dlpfUe1flow);
/******************************************************************************/
/******************************************************************************/
UdpClientHelper dlClientUe2flow;
dlClientUe2flow.SetAttribute("RemotePort", UintegerValue(dlPortUe2flow));
dlClientUe2flow.SetAttribute("MaxPackets", UintegerValue(0xFFFFFFFF));
dlClientUe2flow.SetAttribute("PacketSize", UintegerValue(udpPacketSize2));
dlClientUe2flow.SetAttribute("Interval", TimeValue(Seconds(1.0 / lambda2)));
GbrQosInformation qosUe2flow;
qosUe2flow.gbrDl = 15e6; // Downlink GBR
// The bearer that will carry Ue 2 Flows DC GBR traffic
EpsBearer ue2flowDcGbrBearer(EpsBearer::GBR_LIVE_UL_76, qosUe2flow);
// The filter for the 2 Flows DC GBR traffic
Ptr<EpcTft> ue2FlowTft = Create<EpcTft>();
EpcTft::PacketFilter dlpfUe2flow;
dlpfUe2flow.localPortStart = dlPortUe2flow;
dlpfUe2flow.localPortEnd = dlPortUe2flow;
ue2FlowTft->Add(dlpfUe2flow);
/******************************************************************************/
/******************************************************************************/
UdpClientHelper dlClientUe3flow;
dlClientUe3flow.SetAttribute("RemotePort", UintegerValue(dlPortUe3flow));
dlClientUe3flow.SetAttribute("MaxPackets", UintegerValue(0xFFFFFFFF));
dlClientUe3flow.SetAttribute("PacketSize", UintegerValue(udpPacketSize3));
dlClientUe3flow.SetAttribute("Interval", TimeValue(Seconds(1.0 / lambda3)));
GbrQosInformation qosUe3flow;
qosUe3flow.gbrDl = 15e6; // Downlink GBR
// The bearer that will carry Ue 2 Flows DC GBR traffic
EpsBearer ue3flowDcGbrBearer(EpsBearer::GBR_LIVE_UL_76, qosUe3flow);
// The filter for the 2 Flows DC GBR traffic
Ptr<EpcTft> ue3FlowTft = Create<EpcTft>();
EpcTft::PacketFilter dlpfUe3flow;
dlpfUe3flow.localPortStart = dlPortUe3flow;
dlpfUe3flow.localPortEnd = dlPortUe3flow;
ue3FlowTft->Add(dlpfUe3flow);
/******************************************************************************/
// Install the applications
ApplicationContainer clientApps;
for (uint32_t i = 0; i < ue1flowContainer.GetN(); ++i)
{
Ptr<NetDevice> ueDevice = ue1flowNetDev.Get(i);
Address ueAddress = ue1FlowIpIface.GetAddress(i);
// The client, who is transmitting, is installed in the remote host,
// with destination address set to the address of the UE
dlClientUe1flow.SetAttribute("RemoteAddress", AddressValue(ueAddress));
clientApps.Add(dlClientUe1flow.Install(remoteHost));
// Activate a dedicated bearer for the traffic type
nrHelper->ActivateDedicatedEpsBearer(ueDevice, ue1flowDcGbrBearer, ue1FlowTft);
}
for (uint32_t i = 0; i < ue2flowContainer.GetN(); ++i)
{
Ptr<NetDevice> ueDevice = ue2flowNetDev.Get(i);
Address ueAddress = ue2FlowIpIface.GetAddress(i);
// The client, who is transmitting, is installed in the remote host,
// with destination address set to the address of the UE
dlClientUe2flow.SetAttribute("RemoteAddress", AddressValue(ueAddress));
clientApps.Add(dlClientUe2flow.Install(remoteHost));
// Activate a dedicated bearer for the traffic type
nrHelper->ActivateDedicatedEpsBearer(ueDevice, ue2flowDcGbrBearer, ue2FlowTft);
}
// for (uint32_t i = 0; i < ue3flowContainer.GetN(); ++i)
// {
// Ptr<NetDevice> ueDevice = ue3flowNetDev.Get(i);
// Address ueAddress = ue3FlowIpIface.GetAddress(i);
// // The client, who is transmitting, is installed in the remote host,
// // with destination address set to the address of the UE
// dlClientUe3flow.SetAttribute("RemoteAddress", AddressValue(ueAddress));
// clientApps.Add(dlClientUe3flow.Install(remoteHost));
// // Activate a dedicated bearer for the traffic type
// nrHelper->ActivateDedicatedEpsBearer(ueDevice, ue3flowDcGbrBearer, ue3FlowTft);
// }
// start UDP server and client apps
serverApps.Start(udpAppStartTime);
clientApps.Start(udpAppStartTime);
serverApps.Stop(simTime);
clientApps.Stop(simTime);
Simulator::Stop(simTime);
Simulator::Run();
Simulator::Destroy();
return 0;
}