-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
127 lines (113 loc) · 4.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.utils.data as data_utils
import torch.optim as optim
import torch.nn.init as init
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from scipy import sparse
import os
batch_size = 300
learning_rate = 0.0002
num_epoch = 10
targetepoch = -1
arrayname = 'filter_'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
def load_hadden():
#unique_sid 란 train data의 에서 뽑은 unique한 moveId
unique_sid = list()
with open(os.path.join("datasets", "Hadden", 'unique_sid_m_test.txt'), 'r') as f:
for line in f:
unique_sid.append(line.strip())
#unique_sid size
n_items = len(unique_sid)
print(n_items)
# set args
#default binary
global input_size
input_size = [1, 1, n_items]
"""
if args.input_type != "multinomial":
args.input_type = 'binary'
args.dynamic_binarization = False
"""
# start processing
# data 구성 뒤섞여 있는 data 기반으로 unique uid 가 mapping 되어있음
# 따라서 uid의 갯수 0부터 20000개 제외
# train test uid 10000개씩
# data는 sparse matrix를 만듬 data userId*moveId 평면에 해당 죄표를 1로 찍는다
def load_train_data(csv_file):
tp = pd.read_csv(csv_file)
n_users = tp['uid'].max() + 1
print(n_users)
rows, cols = tp['uid'], tp['sid']
data = sparse.csr_matrix((np.ones_like(rows),
(rows, cols)), dtype='float32',
shape=(n_users, n_items)).toarray()
return data
# data는 sparse matrix를 만듬 data userId*moveId 평면에 해당 죄표를 1로 찍는다
# train, validation and test data
# data는 sparse matrix를 만듬 train dataset, userId*moveId 평면에 해당 죄표를 1로 찍는다
x_train = load_train_data(os.path.join("datasets", "Hadden",'train_test.csv'))
# x_train 섞기
np.random.shuffle(x_train)
# idle y's
# x_train.shape[0] train uid 갯수
# (uid,1) 이 0인 y_train
y_train = np.zeros((x_train.shape[0], 1))
# pytorch data loader
#input output
#DataLoader
train = data_utils.TensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train))
train_loader = data_utils.DataLoader(train, batch_size=batch_size, shuffle=True,)
print("train",len(train_loader))
return train_loader
train_loader = load_hadden()
error_arry = []
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Linear(np.prod(input_size), 200)
self.decoder = nn.Linear(200, np.prod(input_size))
def forward(self, x, epoch):
encoded = self.encoder(x)
out = self.decoder(encoded)
return out
model = Autoencoder().to(device)
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
def getDifferenceRate(x,output):
cpu_x = x.cpu().numpy()
cpu_output = output.cpu()
n_cpu_output = cpu_output.detach().numpy()
"""
new_list =[(i,j) for i in range(cpu_x.shape[0]) for j in range(cpu_x.shape[1]) if cpu_x[i][j] == 1]
print(len(new_list))
print(new_list)
"""
new_row, new_col = np.where(cpu_x ==1)
print(new_row.shape)
print(new_col.shape)
total =0;
for i in range(new_row.shape[0]):
total += abs(cpu_x[new_row[i]][new_col[i]] - n_cpu_output[new_row[i]][new_col[i]])
print("error rate", total/new_row.shape[0])
error_arry.append(total/new_row.shape[0])
for epoch in range(10):
for batch_idx, [image, label] in enumerate(train_loader):
x = image.to(device)
optimizer.zero_grad()
output = model.forward(x,epoch)
loss = loss_func(output, x)
loss.backward()
optimizer.step()
if(epoch == 9):
getDifferenceRate(x,output)
print(loss)
error_arry_n = np.array(error_arry)
print(np.mean(error_arry_n))