-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
314 lines (268 loc) · 13.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from __future__ import division
from __future__ import print_function
from data import *
from model import *
from utils import *
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import argparse
import os
import time
from tqdm import tqdm
from tensorboardX import SummaryWriter
import torch.backends.cudnn as cudnn
import random
import pdb
parser = argparse.ArgumentParser(description='PIRM 2018')
# dataset
parser.add_argument('--scale', type=int, default=4,
help='interpolation scale. Default 4')
parser.add_argument('--train_dataset', type=str, default='DIV2K',
help='Training dataset')
parser.add_argument('--valid_dataset', type=str, default='PIRM',
help='Training dataset')
parser.add_argument('--num_valids', type=int, default=10,
help='Number of image for validation')
# model
parser.add_argument('--num_channels', type=int, default=256,
help='number of resnet channel')
parser.add_argument('--num_blocks', type=int, default=32,
help='number of resnet blocks')
parser.add_argument('--res_scale', type=float, default=0.1)
parser.add_argument('--phase', type=str, default='train',
help='phase: pretrain or train')
parser.add_argument('--pretrained_model', type=str, default='',
help='pretrained model for train phase (optional)')
# training
parser.add_argument('--batch_size', type=int, default=16,
help='batch size used for training')
parser.add_argument('--learning_rate', type=float, default=5e-5,
help='learning rate used for training (use 1e-4 for pretrain)')
parser.add_argument('--lr_step', type=int, default=120,
help='steps to decay learning rate')
parser.add_argument('--num_epochs', type=int, default=200,
help='number of training epochs')
parser.add_argument('--num_repeats', type=int, default=20,
help='number of repeat per image for each epoch')
parser.add_argument('--patch_size', type=int, default=24,
help='input patch size')
# checkpoint
parser.add_argument('--check_point', type=str, default='check_point/my_model',
help='path to save log and model')
parser.add_argument('--snapshot_every', type=int, default=10,
help='snapshot freq, used for train model only')
# GAN
parser.add_argument('--gan_type', type=str, default='RSGAN')
parser.add_argument('--GP', type=lambda x: (str(x).lower() == 'true'), default=False,
help='Gradient penalty for training GAN (Note: default False)')
parser.add_argument('--spectral_norm', type=lambda x: (str(x).lower() == 'true'), default=False,
help='Discriminator Spectral norm')
parser.add_argument('--focal_loss', type=lambda x: (str(x).lower() == 'true'), default=True)
parser.add_argument('--fl_gamma', type=float, default=1,
help='Focal loss gamma')
parser.add_argument('--alpha_vgg', type=float, default=50)
parser.add_argument('--alpha_gan', type=float, default=1)
parser.add_argument('--alpha_tv', type=float, default=1e-6)
parser.add_argument('--alpha_l1', type=float, default=0)
args = parser.parse_args()
print('############################################################')
print('# Image Super Resolution - PIRM2018 - TEAM_AIM #')
print('# Implemented by Thang Vu, [email protected] #')
print('############################################################')
print('')
print('_____________YOUR SETTINGS_____________')
for arg in vars(args):
print("%20s: %s" %(str(arg), str(getattr(args, arg))))
print('')
def main(argv=None):
# ============Dataset===============
print('Loading dataset...')
train_set = SRDataset(args.train_dataset, 'train', patch_size=args.patch_size,
num_repeats=args.num_repeats, is_aug=True, crop_type='random')
val_set = SRDataset(args.valid_dataset, 'valid', patch_size=None, num_repeats=1,
is_aug=False, fixed_length=10)
train_loader = DataLoader(train_set, batch_size=args.batch_size,
shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
val_loader = DataLoader(val_set, batch_size=1,
shuffle=False, num_workers=4, pin_memory=True)
# ============Model================
n_GPUs = torch.cuda.device_count()
print('Loading model using %d GPU(s)' %n_GPUs)
opt = {'patch_size': args.patch_size,
'num_channels': args.num_channels,
'depth': args.num_blocks,
'res_scale': args.res_scale,
'spectral_norm': args.spectral_norm}
G = Generator(opt)
if args.pretrained_model != '':
print('Fetching pretrained model', args.pretrained_model)
G.load_state_dict(torch.load(args.pretrained_model))
G = nn.DataParallel(G).cuda()
D = nn.DataParallel(Discriminator(opt)).cuda()
vgg = nn.DataParallel(VGG()).cuda()
cudnn.benchmark = True
#========== Optimizer============
trainable = filter(lambda x: x.requires_grad, G.parameters())
optim_G = optim.Adam(trainable, betas=(0.9, 0.999),
lr=args.learning_rate)
optim_D = optim.Adam(D.parameters(), betas=(0.9, 0.999), lr=args.learning_rate)
scheduler_G = lr_scheduler.StepLR(optim_G, step_size=args.lr_step, gamma=0.5)
scheduler_D = lr_scheduler.StepLR(optim_D, step_size=args.lr_step, gamma=0.5)
# ============Loss==============
l1_loss_fn = nn.L1Loss()
bce_loss_fn = nn.BCEWithLogitsLoss()
f_loss_fn = FocalLoss(args.fl_gamma)
def vgg_loss_fn(output, label):
vgg_sr, vgg_hr = vgg(output, label)
return F.mse_loss(vgg_sr, vgg_hr)
def tv_loss_fn(y):
loss_var = torch.sum(torch.abs(y[:, :, :, :-1] - y[:, :, :, 1:])) + \
torch.sum(torch.abs(y[:, :, :-1, :] - y[:, :, 1:, :]))
return loss_var
# ==========Logging and book-keeping=======
check_point = os.path.join(args.check_point, args.phase)
tb = SummaryWriter(check_point)
best_psnr = 0
# ==========GAN vars======================
target_real = Variable(torch.Tensor(args.batch_size, 1).fill_(1.0), requires_grad=False).cuda()
target_fake = Variable(torch.Tensor(args.batch_size, 1).fill_(0.0), requires_grad=False).cuda()
# Training and validating
for epoch in range(1, args.num_epochs+1):
#===========Pretrain===================
if args.phase == 'pretrain':
scheduler_G.step()
cur_lr = optim_G.param_groups[0]['lr']
print('Model {}. Epoch [{}/{}]. Learning rate: {}'.format(
args.check_point, epoch, args.num_epochs, cur_lr))
num_batches = len(train_set)//args.batch_size
running_loss = 0
for i, (inputs, labels) in enumerate(tqdm(train_loader)):
lr, hr = (Variable(inputs.cuda()),
Variable(labels.cuda()))
sr = G(lr)
optim_G.zero_grad()
loss = l1_loss_fn(sr, hr)
loss.backward()
optim_G.step()
# update log
running_loss += loss.item()
avr_loss = running_loss/num_batches
tb.add_scalar('Learning rate', cur_lr, epoch)
tb.add_scalar('Pretrain Loss', avr_loss, epoch)
print('Finish train [%d/%d]. Loss: %.2f' %(epoch, args.num_epochs, avr_loss))
#===============Train======================
else:
scheduler_G.step()
scheduler_D.step()
cur_lr = optim_G.param_groups[0]['lr']
print('Model {}. Epoch [{}/{}]. Learning rate: {}'.format(
check_point, epoch, args.num_epochs, cur_lr))
num_batches = len(train_set)//args.batch_size
running_loss = np.zeros(5)
for i, (inputs, labels) in enumerate(tqdm(train_loader)):
lr, hr = (Variable(inputs.cuda()),
Variable(labels.cuda()))
#######################################
# Discriminator
# hr: real, sr: fake
#######################################
for p in D.parameters():
p.requires_grad = True
optim_D.zero_grad()
pred_real = D(hr)
sr = G(lr)
pred_fake = D(sr.detach())
if args.gan_type == 'SGAN':
total_D_loss = bce_loss_fn(pred_real, target_real) + bce_loss_fn(pred_fake, target_fake)
elif args.gan_type == 'RSGAN':
total_D_loss = bce_loss_fn(pred_real - pred_fake, target_real)
# gradient penalty
if args.GP:
grad_outputs = torch.ones(args.batch_size, 1).cuda()
u = torch.FloatTensor(args.batch_size, 1, 1, 1).cuda()
u.uniform_(0, 1)
x_both = (hr*u + sr*(1-u)).cuda()
x_both = Variable(x_both, requires_grad=True)
grad = torch.autograd.grad(outputs=D(x_both), inputs=x_both,
grad_outputs=grad_outputs, retain_graph=True,
create_graph=True, only_inputs=True)[0]
grad_penalty = 10*((grad.norm(2, 1).norm(2, 1).norm(2, 1) - 1) ** 2).mean()
total_D_loss = total_D_loss + grad_penalty
total_D_loss.backward()
optim_D.step()
######################################
# Generator
######################################
for p in D.parameters():
p.requires_grad = False
optim_G.zero_grad()
pred_fake = D(sr)
pred_real = D(hr)
l1_loss = l1_loss_fn(sr, hr)*args.alpha_l1
vgg_loss = vgg_loss_fn(sr, hr)*args.alpha_vgg
tv_loss = tv_loss_fn(sr)*args.alpha_tv
if args.gan_type == 'SGAN':
if args.focal_loss:
G_loss = f_loss_fn(pred_fake, target_real)
else:
G_loss = bce_loss_fn(pred_fake, target_real)
elif args.gan_type == 'RSGAN':
if args.focal_loss:
G_loss = f_loss_fn(pred_fake - pred_real, target_real) #Focal loss
else:
G_loss = bce_loss_fn(pred_fake - pred_real, target_real)
G_loss = G_loss*args.alpha_gan
total_G_loss = l1_loss + vgg_loss + G_loss + tv_loss
total_G_loss.backward()
optim_G.step()
# update log
running_loss += [l1_loss.item(),
vgg_loss.item(),
G_loss.item(),
tv_loss.item(),
total_D_loss.item()]
avr_loss = running_loss/num_batches
tb.add_scalar('Learning rate', cur_lr, epoch)
tb.add_scalar('L1 Loss', avr_loss[0], epoch)
tb.add_scalar('VGG Loss', avr_loss[1], epoch)
tb.add_scalar('G Loss', avr_loss[2], epoch)
tb.add_scalar('TV Loss', avr_loss[3], epoch)
tb.add_scalar('D Loss', avr_loss[4], epoch)
tb.add_scalar('Total G Loss', avr_loss[0:4].sum(), epoch)
print('Finish train [%d/%d]. L1: %.2f. VGG: %.2f. G: %.2f. TV: %.2f. Total G: %.2f. D: %.2f'\
%(epoch, args.num_epochs, avr_loss[0], avr_loss[1], avr_loss[2],
avr_loss[3], avr_loss[0:4].sum(), avr_loss[4]))
#===============Validate================
print('Validating...')
val_psnr = 0
num_batches = len(val_set)
with torch.no_grad():
for i, (inputs, labels) in enumerate(tqdm(val_loader)):
lr, hr = (Variable(inputs.cuda()),
Variable(labels.cuda()))
sr = G(lr)
update_tensorboard(epoch, tb, i, lr, sr, hr)
val_psnr += compute_PSNR(hr, sr)
val_psnr = val_psnr/num_batches
tb.add_scalar('Validate PSNR', val_psnr, epoch)
if args.phase == 'pretrain':
print('Finish valid [%d/%d]. Best PSNR: %.4fdB. Cur PSNR: %.4fdB' \
%(epoch, args.num_epochs, best_psnr, val_psnr))
if best_psnr < val_psnr:
best_psnr = val_psnr
model_path = os.path.join(check_point, 'best_model.pt')
torch.save(G.module.state_dict(), model_path)
print('Saved new best model.')
else:
print('Finish valid [%d/%d]. PSNR: %.4fdB' %(epoch, args.num_epochs, val_psnr))
if epoch%args.snapshot_every == 0:
model_path = os.path.join(check_point, 'model_{}.pt'.format(epoch))
torch.save(G.module.state_dict(), model_path)
print('Saved snapshot model.')
print('')
if __name__ == '__main__':
main()