forked from angeladai/3DMV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_2d_data.py
112 lines (96 loc) · 5 KB
/
prepare_2d_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# pre-process ScanNet 2D data
# note: depends on the sens file reader from ScanNet:
# https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py
# if export_label_images flag is on:
# - depends on https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py
# - also assumes that label images are unzipped as scene*/label*/*.png
# expected file structure:
# - prepare_2d_data.py
# - https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py
# - https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py
#
# example usage:
# python prepare_2d_data.py --scannet_path data/scannetv2 --output_path data/scannetv2_images --export_label_images
import argparse
import os, sys
import numpy as np
import skimage.transform as sktf
import imageio
try:
from SensorData import SensorData
except:
print('Failed to import SensorData (from ScanNet code toolbox)')
sys.exit(-1)
try:
import util
except:
print('Failed to import ScanNet code toolbox util')
sys.exit(-1)
# params
parser = argparse.ArgumentParser()
parser.add_argument('--scannet_path', required=True, help='path to scannet data')
parser.add_argument('--output_path', required=True, help='where to output 2d data')
parser.add_argument('--export_label_images', dest='export_label_images', action='store_true')
parser.add_argument('--label_type', default='label-filt', help='which labels (label or label-filt)')
parser.add_argument('--frame_skip', type=int, default=20, help='export every nth frame')
parser.add_argument('--label_map_file', default='', help='path to scannetv2-labels.combined.tsv (required for label export only)')
parser.add_argument('--output_image_width', type=int, default=320, help='export image width')
parser.add_argument('--output_image_height', type=int, default=240, help='export image height')
parser.set_defaults(export_label_images=False)
opt = parser.parse_args()
if opt.export_label_images:
assert opt.label_map_file != ''
print(opt)
def print_error(message):
sys.stderr.write('ERROR: ' + str(message) + '\n')
sys.exit(-1)
# from https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/2d_helpers/convert_scannet_label_image.py
def map_label_image(image, label_mapping):
mapped = np.copy(image)
for k,v in label_mapping.iteritems():
mapped[image==k] = v
return mapped.astype(np.uint8)
def main():
if not os.path.exists(opt.output_path):
os.makedirs(opt.output_path)
label_mapping = None
if opt.export_label_images:
label_map = util.read_label_mapping(opt.label_map_file, label_from='id', label_to='nyu40id')
scenes = [d for d in os.listdir(opt.scannet_path) if os.path.isdir(os.path.join(opt.scannet_path, d))]
print('Found %d scenes' % len(scenes))
for i in range(len(scenes)):
sens_file = os.path.join(opt.scannet_path, scenes[i], scenes[i] + '.sens')
label_path = os.path.join(opt.scannet_path, scenes[i], opt.label_type)
if opt.export_label_images and not os.path.isdir(label_path):
print_error('Error: using export_label_images option but label path %s does not exist' % label_path)
output_color_path = os.path.join(opt.output_path, scenes[i], 'color')
if not os.path.isdir(output_color_path):
os.makedirs(output_color_path)
output_depth_path = os.path.join(opt.output_path, scenes[i], 'depth')
if not os.path.isdir(output_depth_path):
os.makedirs(output_depth_path)
output_pose_path = os.path.join(opt.output_path, scenes[i], 'pose')
if not os.path.isdir(output_pose_path):
os.makedirs(output_pose_path)
output_label_path = os.path.join(opt.output_path, scenes[i], 'label')
if opt.export_label_images and not os.path.isdir(output_label_path):
os.makedirs(output_label_path)
# read and export
sys.stdout.write('\r[ %d | %d ] %s\tloading...' % ((i + 1), len(scenes), scenes[i]))
sys.stdout.flush()
sd = SensorData(sens_file)
sys.stdout.write('\r[ %d | %d ] %s\texporting...' % ((i + 1), len(scenes), scenes[i]))
sys.stdout.flush()
sd.export_color_images(output_color_path, image_size=[opt.output_image_height, opt.output_image_width], frame_skip=opt.frame_skip)
sd.export_depth_images(output_depth_path, image_size=[opt.output_image_height, opt.output_image_width], frame_skip=opt.frame_skip)
sd.export_poses(output_pose_path, frame_skip=opt.frame_skip)
if opt.export_label_images:
for f in range(0, len(sd.frames), opt.frame_skip):
label_file = os.path.join(label_path, str(f) + '.png')
image = np.array(imageio.imread(label_file))
image = sktf.resize(image, [opt.output_image_height, opt.output_image_width], order=0, preserve_range=True)
mapped_image = map_label_image(image, label_map)
imageio.imwrite(os.path.join(output_label_path, str(f) + '.png'), mapped_image)
print('')
if __name__ == '__main__':
main()