forked from supercollider/supercollider
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSC_fftlib.cpp
446 lines (379 loc) · 15.6 KB
/
SC_fftlib.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
SC_fftlib.cpp
An interface to abstract over different FFT libraries, for SuperCollider 3.
(c) 2007-2008 Dan Stowell, incorporating code from
SuperCollider 3 Copyright (c) 2002 James McCartney.
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
NOTE:
vDSP uses a "SplitBuf" as an intermediate representation of the data.
For speed we keep this global, although this makes the code non-thread-safe.
(This is not new to this refactoring. Just worth noting.)
*/
#include "clz.h"
#include <stdlib.h>
#include <cmath>
#include <stdio.h>
#include <cstring>
#include <cassert>
#include "SC_fftlib.h"
#include "malloc_aligned.hpp"
#ifdef NOVA_SIMD
# include "simd_binary_arithmetic.hpp"
#endif
// We include vDSP even if not using for FFT, since we want to use some vectorised add/mul tricks
#if defined(__APPLE__)
# include <Accelerate/Accelerate.h>
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// Constants and structs
// Decisions here about which FFT library to use.
// We include the relevant libs but also ensure that one, and only one, of them is active...
#ifdef SC_FFT_FFTW
# define SC_FFT_FFTW 1
# define SC_FFT_VDSP 0
# define SC_FFT_GREEN 0
# include <fftw3.h>
#elif defined(SC_FFT_GREEN)
# define SC_FFT_FFTW 0
# define SC_FFT_VDSP 0
# define SC_FFT_GREEN 1
extern "C" {
# include "fftlib.h"
}
#elif defined(__APPLE__)
# define SC_FFT_FFTW 0
# define SC_FFT_VDSP 1
# define SC_FFT_GREEN 0
#else
# define SC_FFT_FFTW 0
# define SC_FFT_VDSP 0
# define SC_FFT_GREEN 0
#endif
// This struct is a bit like FFTW's idea of a "plan": it represents an FFT operation that may be applied once or
// repeatedly. It should be possible for indata and outdata to be the same, for quasi-in-place operation.
typedef struct scfft {
unsigned int nfull, nwin, log2nfull,
log2nwin; // Lengths of full FFT frame, and the (possibly shorter) windowed data frame
short wintype;
float *indata, *outdata, *trbuf;
float scalefac; // Used to rescale the data to unity gain
} scfft;
static float* fftWindow[2][SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1];
#if SC_FFT_VDSP
static FFTSetup fftSetup[SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1]; // vDSP setups, one per FFT size
static COMPLEX_SPLIT splitBuf; // Temp buf for holding rearranged data
#endif
#if SC_FFT_GREEN
static float* cosTable[SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1];
#endif
#if SC_FFT_FFTW
static fftwf_plan precompiledForwardPlans[SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1];
static fftwf_plan precompiledBackwardPlans[SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1];
static fftwf_plan precompiledForwardPlansInPlace[SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1];
static fftwf_plan precompiledBackwardPlansInPlace[SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1];
#endif
#define pi 3.1415926535898f
#define twopi 6.28318530717952646f
////////////////////////////////////////////////////////////////////////////////////////////////////
// Functions
#if SC_FFT_GREEN
static float* create_cosTable(int log2n);
static float* create_cosTable(int log2n) {
int size = 1 << log2n;
int size2 = size / 4 + 1;
float* win = (float*)nova::malloc_aligned(size2 * sizeof(float));
if (win == NULL)
return NULL;
double winc = twopi / size;
for (int i = 0; i < size2; ++i) {
double w = i * winc;
win[i] = cos(w);
}
return win;
}
#endif
static inline float* scfft_create_fftwindow(int wintype, int log2n) {
int size = 1 << log2n;
float* win = (float*)nova::malloc_aligned(size * sizeof(float));
if (!win)
return NULL;
double winc;
switch (wintype) {
case kSineWindow:
winc = pi / size;
for (int i = 0; i < size; ++i) {
double w = i * winc;
win[i] = sin(w);
}
break;
case kHannWindow:
winc = twopi / size;
for (int i = 0; i < size; ++i) {
double w = i * winc;
win[i] = 0.5 - 0.5 * cos(w);
}
break;
}
return win;
}
static void scfft_ensurewindow(unsigned short log2_fullsize, unsigned short log2_winsize, short wintype);
static bool scfft_global_initialization(void) {
for (int wintype = 0; wintype < 2; ++wintype) {
for (int i = 0; i < SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1; ++i) {
fftWindow[wintype][i] = 0;
}
for (int i = SC_FFT_LOG2_MINSIZE; i < SC_FFT_LOG2_MAXSIZE + 1; ++i) {
fftWindow[wintype][i] = scfft_create_fftwindow(wintype, i);
}
}
#if SC_FFT_GREEN
for (int i = 0; i < SC_FFT_LOG2_ABSOLUTE_MAXSIZE_PLUS1; ++i) {
cosTable[i] = 0;
}
for (int i = SC_FFT_LOG2_MINSIZE; i < SC_FFT_LOG2_MAXSIZE + 1; ++i) {
cosTable[i] = create_cosTable(i);
}
printf("SC FFT global init: cosTable initialised.\n");
#elif SC_FFT_VDSP
// vDSP inits its twiddle factors
for (int i = SC_FFT_LOG2_MINSIZE; i < SC_FFT_LOG2_MAXSIZE + 1; ++i) {
fftSetup[i] = vDSP_create_fftsetup(i, FFT_RADIX2);
if (fftSetup[i] == NULL) {
printf("FFT ERROR: Mac vDSP library could not allocate FFT setup for size %i\n", 1 << i);
}
}
// vDSP prepares its memory-aligned buffer for rearranging input data.
// Note max size here - meaning max input buffer size is these two sizes added together.
// vec_malloc used in API docs, but apparently that's deprecated and malloc is sufficient for aligned memory on OSX.
splitBuf.realp = (float*)malloc(SC_FFT_MAXSIZE * sizeof(float) / 2);
splitBuf.imagp = (float*)malloc(SC_FFT_MAXSIZE * sizeof(float) / 2);
// printf("SC FFT global init: vDSP initialised.\n");
#elif SC_FFT_FFTW
size_t maxSize = 1 << SC_FFT_LOG2_MAXSIZE;
float* buffer1 = (float*)fftwf_malloc((maxSize + 1) * sizeof(float));
float* buffer2 = (float*)fftwf_malloc((maxSize + 1) * sizeof(float));
for (int i = SC_FFT_LOG2_MINSIZE; i < SC_FFT_LOG2_MAXSIZE + 1; ++i) {
size_t currentSize = 1 << i;
precompiledForwardPlans[i] =
fftwf_plan_dft_r2c_1d(currentSize, buffer1, (fftwf_complex*)buffer2, FFTW_ESTIMATE);
precompiledBackwardPlans[i] =
fftwf_plan_dft_c2r_1d(currentSize, (fftwf_complex*)buffer2, buffer1, FFTW_ESTIMATE);
precompiledForwardPlansInPlace[i] =
fftwf_plan_dft_r2c_1d(currentSize, buffer1, (fftwf_complex*)buffer1, FFTW_ESTIMATE);
precompiledBackwardPlansInPlace[i] =
fftwf_plan_dft_c2r_1d(currentSize, (fftwf_complex*)buffer1, buffer1, FFTW_ESTIMATE);
}
fftwf_free(buffer1);
fftwf_free(buffer2);
// printf("SC FFT global init: FFTW initialised.\n");
#endif
return false;
}
static bool dummy = scfft_global_initialization();
// You need to provide an intermediate "transform buffer". Size will depend on which underlying lib is being used.
// "fullsize" is the number of samples in the input buffer (inc any padding), aka the number of "points" in the FFT.
// Often in an SC plugin you can get this number from buf->samples if you're grabbing an external buffer.
// The input value is given in samples.
// The return value is given in bytes.
static size_t scfft_trbufsize(unsigned int fullsize) {
#if SC_FFT_FFTW
// Transform buf is two floats "too big" because of FFTWF's output ordering
return (fullsize + 2) * sizeof(float);
#else
// vDSP packs the nyquist in with the DC, so size is same as input buffer (plus zeropadding)
// Green does this too
return (fullsize) * sizeof(float);
#endif
}
static int largest_log2n = SC_FFT_LOG2_MAXSIZE;
static int largest_fftsize = 1 << largest_log2n;
scfft* scfft_create(size_t fullsize, size_t winsize, SCFFT_WindowFunction wintype, float* indata, float* outdata,
SCFFT_Direction forward, SCFFT_Allocator& alloc) {
if ((fullsize > SC_FFT_ABSOLUTE_MAXSIZE) || (fullsize < SC_FFT_MINSIZE))
return NULL;
const int alignment = 128; // in bytes
char* chunk = (char*)alloc.alloc(sizeof(scfft) + scfft_trbufsize(fullsize) + alignment);
if (!chunk)
return NULL;
scfft* f = (scfft*)chunk;
float* trbuf = (float*)(chunk + sizeof(scfft));
trbuf = (float*)((size_t)((char*)trbuf + (alignment - 1))
& -alignment); // FIXME: should be intptr_t instead of size_t once we use c++11
#ifdef NOVA_SIMD
assert(nova::vec<float>::is_aligned(trbuf));
#endif
f->nfull = fullsize;
f->nwin = winsize;
f->log2nfull = LOG2CEIL(fullsize);
f->log2nwin = LOG2CEIL(winsize);
f->wintype = wintype;
f->indata = indata;
f->outdata = outdata;
f->trbuf = trbuf;
// Buffer is larger than the range of sizes we provide for at startup; we can get ready just-in-time though
if (fullsize > largest_fftsize) {
scfft_ensurewindow(f->log2nfull, f->log2nwin, wintype);
}
// The scale factors rescale the data to unity gain. The old Green lib did this itself, meaning scalefacs would here
// be 1...
if (forward) {
#if SC_FFT_VDSP
f->scalefac = 0.5f;
#else // forward FFTW and Green factor
f->scalefac = 1.f;
#endif
} else { // backward FFTW and VDSP factor
#if SC_FFT_GREEN
f->scalefac = 1.f;
#else // fftw, vdsp
f->scalefac = 1.f / fullsize;
#endif
}
memset(trbuf, 0, scfft_trbufsize(fullsize));
return f;
}
// check the global list of windows incs ours; create if not.
// Note that expanding the table, if triggered, will cause a CPU hit as things are malloc'ed, realloc'ed, etc.
void scfft_ensurewindow(unsigned short log2_fullsize, unsigned short log2_winsize, short wintype) {
// Ensure we have enough space to do our calcs
#if SC_FFT_FFTW
int old_log2n = largest_log2n;
#endif
if (log2_fullsize > largest_log2n) {
largest_log2n = log2_fullsize;
largest_fftsize = 1 << largest_log2n;
#if SC_FFT_VDSP
size_t newsize = (1 << largest_log2n) * sizeof(float) / 2;
splitBuf.realp = (float*)realloc(splitBuf.realp, newsize);
splitBuf.imagp = (float*)realloc(splitBuf.imagp, newsize);
#endif
}
#if SC_FFT_FFTW
size_t maxSize = 1 << largest_log2n;
float* buffer1 = (float*)fftwf_malloc((maxSize + 1) * sizeof(float));
float* buffer2 = (float*)fftwf_malloc((maxSize + 1) * sizeof(float));
for (int i = old_log2n; i < largest_log2n + 1; ++i) {
size_t currentSize = 1 << i;
precompiledForwardPlans[i] =
fftwf_plan_dft_r2c_1d(currentSize, buffer1, (fftwf_complex*)buffer2, FFTW_ESTIMATE);
precompiledBackwardPlans[i] =
fftwf_plan_dft_c2r_1d(currentSize, (fftwf_complex*)buffer2, buffer1, FFTW_ESTIMATE);
precompiledForwardPlansInPlace[i] =
fftwf_plan_dft_r2c_1d(currentSize, buffer1, (fftwf_complex*)buffer1, FFTW_ESTIMATE);
precompiledBackwardPlansInPlace[i] =
fftwf_plan_dft_c2r_1d(currentSize, (fftwf_complex*)buffer1, buffer1, FFTW_ESTIMATE);
}
fftwf_free(buffer1);
fftwf_free(buffer2);
#endif
// Ensure our window has been created
if ((wintype != kRectWindow) && (fftWindow[wintype][log2_winsize] == 0)) {
fftWindow[wintype][log2_winsize] = scfft_create_fftwindow(wintype, log2_winsize);
}
// Ensure our FFT twiddle factors (or whatever) have been created
#if SC_FFT_VDSP
if (fftSetup[log2_fullsize] == 0)
fftSetup[log2_fullsize] = vDSP_create_fftsetup(log2_fullsize, FFT_RADIX2);
#elif SC_FFT_GREEN
if (cosTable[log2_fullsize] == 0)
cosTable[log2_fullsize] = create_cosTable(log2_fullsize);
#endif
}
// these do the main jobs.
static void scfft_dowindowing(float* data, unsigned int winsize, unsigned int fullsize, unsigned short log2_winsize,
short wintype, float scalefac) {
if (wintype != kRectWindow) {
float* win = fftWindow[wintype][log2_winsize];
if (!win) {
// return;
win = fftWindow[wintype][log2_winsize] = scfft_create_fftwindow(wintype, log2_winsize);
}
#if SC_FFT_VDSP
vDSP_vmul(data, 1, win, 1, data, 1, winsize);
#elif defined(NOVA_SIMD)
using namespace nova;
if (((vec<float>::objects_per_cacheline & winsize) == 0) && vec<float>::is_aligned(data))
times_vec_simd(data, data, win, winsize);
else
times_vec(data, data, win, winsize);
#else
--win;
float* in = data - 1;
for (int i = 0; i < winsize; ++i) {
*++in *= *++win;
}
#endif
}
// scale factor is different for different libs. But the compiler switch here is about using vDSP's fast
// multiplication method.
if (scalefac != 1.f) {
#if SC_FFT_VDSP
vDSP_vsmul(data, 1, &scalefac, data, 1, winsize);
#else
for (unsigned int i = 0; i < winsize; ++i)
data[i] *= scalefac;
#endif
}
// Zero-padding:
memset(data + winsize, 0, (fullsize - winsize) * sizeof(float));
}
void scfft_dofft(scfft* f) {
// Data goes to transform buf
memcpy(f->trbuf, f->indata, f->nwin * sizeof(float));
scfft_dowindowing(f->trbuf, f->nwin, f->nfull, f->log2nwin, f->wintype, f->scalefac);
#if SC_FFT_FFTW
// forward transformation is in-place
fftwf_execute_dft_r2c(precompiledForwardPlansInPlace[f->log2nfull], f->trbuf, (fftwf_complex*)f->trbuf);
// Rearrange output data onto public buffer
memcpy(f->outdata, f->trbuf, f->nfull * sizeof(float));
f->outdata[1] = f->trbuf[f->nfull]; // Pack nyquist val in
#elif SC_FFT_VDSP
// Perform even-odd split
vDSP_ctoz((COMPLEX*)f->trbuf, 2, &splitBuf, 1, f->nfull >> 1);
// Now the actual FFT
vDSP_fft_zrip(fftSetup[f->log2nfull], &splitBuf, 1, f->log2nfull, FFT_FORWARD);
// Copy the data to the public output buf, transforming it back out of "split" representation
vDSP_ztoc(&splitBuf, 1, (DSPComplex*)f->outdata, 2, f->nfull >> 1);
#elif SC_FFT_GREEN
// Green FFT is in-place
rffts(f->trbuf, f->log2nfull, 1, cosTable[f->log2nfull]);
// Copy to public buffer
memcpy(f->outdata, f->trbuf, f->nfull * sizeof(float));
#endif
}
void scfft_doifft(scfft* f) {
#if SC_FFT_FFTW
float* trbuf = f->trbuf;
size_t bytesize = f->nfull * sizeof(float);
memcpy(trbuf, f->indata, bytesize);
trbuf[1] = 0.f;
trbuf[f->nfull] = f->indata[1]; // Nyquist goes all the way down to the end of the line...
trbuf[f->nfull + 1] = 0.f;
fftwf_execute_dft_c2r(precompiledBackwardPlans[f->log2nfull], (fftwf_complex*)trbuf, f->outdata);
#elif SC_FFT_VDSP
vDSP_ctoz((COMPLEX*)f->indata, 2, &splitBuf, 1, f->nfull >> 1);
vDSP_fft_zrip(fftSetup[f->log2nfull], &splitBuf, 1, f->log2nfull, FFT_INVERSE);
vDSP_ztoc(&splitBuf, 1, (DSPComplex*)f->outdata, 2, f->nfull >> 1);
#elif SC_FFT_GREEN
float* trbuf = f->trbuf;
size_t bytesize = f->nfull * sizeof(float);
memcpy(trbuf, f->indata, bytesize);
// Green FFT is in-place
riffts(trbuf, f->log2nfull, 1, cosTable[f->log2nfull]);
// Copy to public buffer
memcpy(f->outdata, trbuf, f->nwin * sizeof(float));
#endif
scfft_dowindowing(f->outdata, f->nwin, f->nfull, f->log2nwin, f->wintype, f->scalefac);
}
void scfft_destroy(scfft* f, SCFFT_Allocator& alloc) { alloc.free(f); }