forked from Ultimaker/CuraEngine
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathSubDivCube.cpp
287 lines (255 loc) · 11.3 KB
/
SubDivCube.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//Copyright (c) 2018 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "SubDivCube.h"
#include <functional>
#include "../sliceDataStorage.h"
#include "../settings/types/AngleRadians.h" //For the infill angle.
#include "../utils/math.h"
#include "../utils/polygonUtils.h"
#define ONE_OVER_SQRT_2 0.7071067811865475244008443621048490392848359376884740 //1 / sqrt(2)
#define ONE_OVER_SQRT_3 0.577350269189625764509148780501957455647601751270126876018 //1 / sqrt(3)
#define ONE_OVER_SQRT_6 0.408248290463863016366214012450981898660991246776111688072 //1 / sqrt(6)
#define SQRT_TWO_THIRD 0.816496580927726032732428024901963797321982493552223376144 //sqrt(2 / 3)
namespace cura
{
std::vector<SubDivCube::CubeProperties> SubDivCube::cube_properties_per_recursion_step;
coord_t SubDivCube::radius_addition = 0;
Point3Matrix SubDivCube::rotation_matrix;
PointMatrix SubDivCube::infill_rotation_matrix;
SubDivCube::~SubDivCube()
{
for (int child_idx = 0; child_idx < 8; child_idx++)
{
if (children[child_idx])
{
delete children[child_idx];
}
}
}
void SubDivCube::precomputeOctree(SliceMeshStorage& mesh, const Point& infill_origin)
{
radius_addition = mesh.settings.get<coord_t>("sub_div_rad_add");
// if infill_angles is not empty use the first value, otherwise use 0
const std::vector<AngleDegrees> infill_angles = mesh.settings.get<std::vector<AngleDegrees>>("infill_angles");
const AngleDegrees infill_angle = (!infill_angles.empty()) ? infill_angles[0] : AngleDegrees(0);
const coord_t furthest_dist_from_origin = std::sqrt(square(mesh.settings.get<coord_t>("machine_height")) + square(mesh.settings.get<coord_t>("machine_depth") / 2) + square(mesh.settings.get<coord_t>("machine_width") / 2));
const coord_t max_side_length = furthest_dist_from_origin * 2;
size_t curr_recursion_depth = 0;
const coord_t infill_line_distance = mesh.settings.get<coord_t>("infill_line_distance");
if (infill_line_distance > 0)
{
for (coord_t curr_side_length = infill_line_distance * 2; curr_side_length < max_side_length * 2; curr_side_length *= 2)
{
cube_properties_per_recursion_step.emplace_back();
CubeProperties& cube_properties_here = cube_properties_per_recursion_step.back();
cube_properties_here.side_length = curr_side_length;
cube_properties_here.height = sqrt(3) * curr_side_length;
cube_properties_here.square_height = sqrt(2) * curr_side_length;
cube_properties_here.max_draw_z_diff = ONE_OVER_SQRT_3 * curr_side_length;
cube_properties_here.max_line_offset = ONE_OVER_SQRT_6 * curr_side_length;
curr_recursion_depth++;
}
}
Point3 center(infill_origin.X, infill_origin.Y, 0);
Point3Matrix tilt; // rotation matrix to get from axis aligned cubes to cubes standing on their tip
// The Z axis is transformed to go in positive Y direction
//
// cross section in a horizontal plane horizontal plane showing
// looking down at the origin O positive X and positive Y
// Z .
// /:\ Y .
// / : \ ^ .
// / : \ | .
// / .O. \ | .
// /.~' '~.\ O---->X .
// X """"""""""" Y .
tilt.matrix[0] = -ONE_OVER_SQRT_2; tilt.matrix[1] = ONE_OVER_SQRT_2; tilt.matrix[2] = 0;
tilt.matrix[3] = -ONE_OVER_SQRT_6; tilt.matrix[4] = -ONE_OVER_SQRT_6; tilt.matrix[5] = SQRT_TWO_THIRD ;
tilt.matrix[6] = ONE_OVER_SQRT_3; tilt.matrix[7] = ONE_OVER_SQRT_3; tilt.matrix[8] = ONE_OVER_SQRT_3;
infill_rotation_matrix = PointMatrix(infill_angle);
Point3Matrix infill_angle_mat(infill_rotation_matrix);
rotation_matrix = infill_angle_mat.compose(tilt);
mesh.base_subdiv_cube = new SubDivCube(mesh, center, curr_recursion_depth - 1);
}
void SubDivCube::generateSubdivisionLines(const coord_t z, Polygons& result)
{
if (cube_properties_per_recursion_step.empty()) //Infill is set to 0%.
{
return;
}
Polygons directional_line_groups[3];
generateSubdivisionLines(z, result, directional_line_groups);
for (int dir_idx = 0; dir_idx < 3; dir_idx++)
{
Polygons& line_group = directional_line_groups[dir_idx];
for (unsigned int line_idx = 0; line_idx < line_group.size(); line_idx++)
{
result.addLine(line_group[line_idx][0], line_group[line_idx][1]);
}
}
}
void SubDivCube::generateSubdivisionLines(const coord_t z, Polygons& result, Polygons (&directional_line_groups)[3])
{
CubeProperties cube_properties = cube_properties_per_recursion_step[depth];
const coord_t z_diff = std::abs(z - center.z); //!< the difference between the cube center and the target layer.
if (z_diff > cube_properties.height / 2) //!< this cube does not touch the target layer. Early exit.
{
return;
}
if (z_diff < cube_properties.max_draw_z_diff) //!< this cube has lines that need to be drawn.
{
Point relative_a, relative_b; //!< relative coordinates of line endpoints around cube center
Point a, b; //!< absolute coordinates of line endpoints
relative_a.X = (cube_properties.square_height / 2) * (cube_properties.max_draw_z_diff - z_diff) / cube_properties.max_draw_z_diff;
relative_b.X = -relative_a.X;
relative_a.Y = cube_properties.max_line_offset - ((z - (center.z - cube_properties.max_draw_z_diff)) * ONE_OVER_SQRT_2);
relative_b.Y = relative_a.Y;
rotatePointInitial(relative_a);
rotatePointInitial(relative_b);
for (int dir_idx = 0; dir_idx < 3; dir_idx++)//!< draw the line, then rotate 120 degrees.
{
a.X = center.x + relative_a.X;
a.Y = center.y + relative_a.Y;
b.X = center.x + relative_b.X;
b.Y = center.y + relative_b.Y;
addLineAndCombine(directional_line_groups[dir_idx], a, b);
if (dir_idx < 2)
{
rotatePoint120(relative_a);
rotatePoint120(relative_b);
}
}
}
for (int idx = 0; idx < 8; idx++) //!< draws the eight children
{
if (children[idx] != nullptr)
{
children[idx]->generateSubdivisionLines(z, result, directional_line_groups);
}
}
}
SubDivCube::SubDivCube(SliceMeshStorage& mesh, Point3& center, size_t depth)
{
this->depth = depth;
this->center = center;
if (depth == 0) // lowest layer, no need for subdivision, exit.
{
return;
}
if (depth >= cube_properties_per_recursion_step.size()) //Depth is out of bounds of what we pre-computed.
{
return;
}
CubeProperties cube_properties = cube_properties_per_recursion_step[depth];
Point3 child_center;
coord_t radius = double(cube_properties.height) / 4.0 + radius_addition;
int child_nr = 0;
std::vector<Point3> rel_child_centers;
rel_child_centers.emplace_back(1, 1, 1); // top
rel_child_centers.emplace_back(-1, 1, 1); // top three
rel_child_centers.emplace_back(1, -1, 1);
rel_child_centers.emplace_back(1, 1, -1);
rel_child_centers.emplace_back(-1, -1, -1); // bottom
rel_child_centers.emplace_back(1, -1, -1); // bottom three
rel_child_centers.emplace_back(-1, 1, -1);
rel_child_centers.emplace_back(-1, -1, 1);
for (Point3 rel_child_center : rel_child_centers)
{
child_center = center + rotation_matrix.apply(rel_child_center * int32_t(cube_properties.side_length / 4));
if (isValidSubdivision(mesh, child_center, radius))
{
children[child_nr] = new SubDivCube(mesh, child_center, depth - 1);
child_nr++;
}
}
}
bool SubDivCube::isValidSubdivision(SliceMeshStorage& mesh, Point3& center, coord_t radius)
{
coord_t distance2 = 0;
coord_t sphere_slice_radius2;//!< squared radius of bounding sphere slice on target layer
bool inside_somewhere = false;
bool outside_somewhere = false;
int inside;
Ratio part_dist;//what percentage of the radius the target layer is away from the center along the z axis. 0 - 1
const coord_t layer_height = mesh.settings.get<coord_t>("layer_height");
int bottom_layer = (center.z - radius) / layer_height;
int top_layer = (center.z + radius) / layer_height;
for (int test_layer = bottom_layer; test_layer <= top_layer; test_layer += 3) // steps of three. Low-hanging speed gain.
{
part_dist = static_cast<Ratio>(test_layer * layer_height - center.z) / radius;
sphere_slice_radius2 = radius * radius * (1.0 - (part_dist * part_dist));
Point loc(center.x, center.y);
inside = distanceFromPointToMesh(mesh, test_layer, loc, &distance2);
if (inside == 1)
{
inside_somewhere = true;
}
else
{
outside_somewhere = true;
}
if (outside_somewhere && inside_somewhere)
{
return true;
}
if ((inside != 2) && distance2 < sphere_slice_radius2)
{
return true;
}
}
return false;
}
coord_t SubDivCube::distanceFromPointToMesh(SliceMeshStorage& mesh, const LayerIndex layer_nr, Point& location, coord_t* distance2)
{
if (layer_nr < 0 || (unsigned int)layer_nr >= mesh.layers.size()) //!< this layer is outside of valid range
{
return 2;
*distance2 = 0;
}
Polygons& collide = mesh.layers[layer_nr].getInnermostWalls(2, mesh);
Point centerpoint = location;
bool inside = collide.inside(centerpoint);
ClosestPolygonPoint border_point = PolygonUtils::moveInside2(collide, centerpoint);
Point diff = border_point.location - location;
*distance2 = vSize2(diff);
if (inside)
{
return 1;
}
return 0;
}
void SubDivCube::rotatePointInitial(Point& target)
{
target = infill_rotation_matrix.apply(target);
}
void SubDivCube::rotatePoint120(Point& target)
{
//constexpr double sqrt_three_fourths = sqrt(3.0 / 4.0); //TODO: Reactivate once MacOS is upgraded to a more modern compiler.
#define sqrt_three_fourths 0.86602540378443864676372317
const coord_t x = -0.5 * target.X - sqrt_three_fourths * target.Y;
target.Y = -0.5 * target.Y + sqrt_three_fourths * target.X;
target.X = x;
}
void SubDivCube::addLineAndCombine(Polygons& group, Point from, Point to)
{
int epsilon = 10; // the smallest distance of two points which are viewed as coincident (dist > 0 due to rounding errors)
for (unsigned int idx = 0; idx < group.size(); idx++)
{
if (std::abs(from.X - group[idx][1].X) < epsilon && std::abs(from.Y - group[idx][1].Y) < epsilon)
{
from = group[idx][0];
group.remove(idx);
idx--;
continue;
}
if (std::abs(to.X - group[idx][0].X) < epsilon && std::abs(to.Y - group[idx][0].Y) < epsilon)
{
to = group[idx][1];
group.remove(idx);
idx--;
continue;
}
}
group.addLine(from, to);
}
}//namespace cura