-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathsynth.py
391 lines (343 loc) · 9.77 KB
/
synth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from wishbonedevice import WishBoneDevice
import fractions as _frac
import logging
import time
logging.getLogger(__name__).addHandler(logging.NullHandler())
class LMX2581(WishBoneDevice):
""" LMX2581 Frequency Synthesizer """
DICTS = [
#00
{
'ID' : 1 << 31,
'FRAC_DITHER' : 0b11 << 29,
'NO_FCAL' : 1 << 28,
'PLL_N' : 0b111111111111 << 16, # PLL[11:0] PLL Feedback Divider Value
'PLL_NUM_L' : 0b111111111111 << 4, # PLL_NUM[11:0] PLL Fractional Numerator
},
#01
{
'CPG' : 0b11111 << 27,
'VCO_SEL' : 0b11 << 25,
'PLL_NUM_H' : 0b1111111111 << 15, # PLL_NUM[21:12] PLL Fractional Numerator
'FRAC_ORDER' : 0b111 << 12,
'PLL_R' : 0b11111111 << 4, # PLL_R[7:0] divides the OSCin frequency
},
#02
{
'OSC_2X' : 1 << 29,
'CPP' : 1 << 27,
'PLL_DEN' : 0b1111111111111111111111 << 4, # PLL_DEN[21:0] PLL Fractional Denominator
},
#03
{
'VCO_DIV' : 0b11111 << 18, # VCO_DIV[4:0] VCO Divider Value
'OUTB_PWR' : 0b111111 << 12,
'OUTA_PWR' : 0b111111 << 6,
'OUTB_PD' : 1 << 5,
'OUTA_PD' : 1 << 4,
},
#04
{
'PFD_DLY' : 0b111 << 29,
'FL_FRCE' : 1 << 28,
'FL_TOC' : 0b111111111111 << 16,
'FL_CPG' : 0b11111 << 11,
'CPG_BLEED' : 0b111111 << 4,
},
#05
{
'OUT_LDEN' : 1 << 24,
'OSC_FREQ' : 0b111 << 21,
'BUFEN_DIS' : 1 << 20,
'VCO_SEL_MODE' : 0b11 << 15,
'OUTB_MUX' : 0b11 << 13,
'OUTA_MUX' : 0b11 << 11,
'0_DLY' : 1 << 10,
'MODE' : 0b11 << 8,
'PWDN_MODE' : 0b111 << 5,
'RESET' : 1 << 4,
},
#06
{
'RD_DIAGNOSATICS' : 0b11111111111111111111 << 11,
'RDADDR' : 0b1111 << 5,
'UWIRE_LOCK' : 1 << 4,
},
#07
{
'FL_SELECT' : 0b11111 << 26,
'FL_PINMODE' : 0b111 << 23,
'FL_INV' : 1 << 22,
'MUXOUT_SELECT' : 0b11111 << 17,
'MUX_INV' : 1 << 16,
'MUXOUT_PINMODE' : 0b111 << 13,
'LD_SELECT' : 0b11111 << 8,
'LD_INV' : 1 << 7,
'LD_PINMODE' : 0b111 << 4,
},
#08
None,
#09
None,
#10
None,
#11
None,
#12
None,
#13
{
'DLD_ERR_CNT' : 0b1111 << 28,
'DLD_PASS_CNT' : 0b1111111111 << 18,
'DLD_TOL' : 0b111 << 15,
},
#14
None,
#15
{
'VCO_CAP_MAN' : 1 << 12,
'VCO_CAPCODE' : 0b11111111 << 4,
},
]
MASK_DIAG = {
'VCO_SELECT': 0b11 << 18+11,
'FIN_DETECT': 0b1 << 17+11,
'OSCIN_DETECT': 0b1 << 16+11,
'VCO_DETECT': 0b1 << 15+11,
'CAL_RUNNING': 0b1 << 10+11,
'VCO_RAIL_HIGH': 0b1 << 9+11,
'VCO_RAIL_LOW': 0b1 << 8+11,
'VCO_TUNE_HIGH': 0b1 << 6+11,
'VCO_TUNE_VALID': 0b1 << 5+11,
'FLOUT_ON': 0b1 << 4+11,
'DLD': 0b1 << 3+11,
'LD_PINSTATE': 0b1 << 2+11,
'CE_PINSTATE': 0b1 << 1+11,
'BUFEN_PINSTATE': 0b1 << 0+11
}
CMD10 = 0b00100001000000000101000011001010 # Not disclosed to user
CMD09 = 0b00000011110001111100000000111001 # Not disclosed to user
CMD08 = 0b00100000011111011101101111111000 # Not disclosed to user
# Using recommanded parameter settings in the following datasheet
# http://www.ti.com/lit/ds/symlink/lmx2581.pdf
# Also borrow some lines from https://github.com/domagalski/snap-synth
def __init__(self, interface, controller_name, fosc=10):
super(LMX2581, self).__init__(interface, controller_name)
# A non-None address list
self.A_DICT_LIST = [self.DICTS.index(a) for a in self.DICTS if a != None]
self.FOSC = fosc # 10 MHz from GPS module
self.freq_pd = self.FOSC / 1
def init(self):
# Generated via TI http://www.ti.com/tool/clockdesigntool
# and via TI http://www.ti.com/tool/codeloader
r05=0x40870015
r15=0x021FE80F
r13=0x4082C10D
r10=0x210050CA
r09=0x03C7C039
r08=0x207DDBF8
r07=0x00082317
r06=0x000004C6
r05=0x0010A805
r04=0x00000004
r03=0x2004F3C3
r02=0x0C000642
r01=0xD0000011
r00=0x60C80000
self.reset()
self.write(r15)
self.write(r13)
self.write(r10)
self.write(r09)
self.write(r08)
self.write(r07)
self.write(r06)
self.write(r05)
self.write(r04)
self.write(r03)
self.write(r02)
self.write(r01)
self.write(r00)
time.sleep(0.02)
self.write(r00)
def powerOn(self):
self.setWord(0, "PWDN_MODE")
def powerOff(self):
self.setWord(1, "PWDN_MODE")
def outputPower(self,p=15):
self.setWord(p, "OUTA_PWR")
self.setWord(p, "OUTB_PWR")
def get_osc_values(self, synth_mhz, ref_signal):
""" This function gets oscillator values
"""
# Equation for the output frequency.
# f_out = f_osc * OSC_2X / PLL_R * (PLL_N + PLL_NUM/PLL_DEN) / VCO_DIV
# XXX Right now, I'm not going to use OSC_2X or PLL_R, so this becomes
# f_out = f_osc * (PLL_N + PLL_NUM/PLL_DEN) / VCO_DIV
# Get a good VCO_DIV. The minimum VCO frequency is 1800.
# Though the min frequency is 1800, but mostly LMX2581 doesn't get
# locked at this frequency. Change 1800 to 1900
vco_min = 1900; vco_max = 3800
if synth_mhz > vco_min and synth_mhz < vco_max:
# Bypass VCO_DIV by properly setting OUTA_MUX and OUTB_MUX
VCO_DIV = None
else:
vco_guess = int(vco_min / synth_mhz) + 1
VCO_DIV = vco_guess + vco_guess%2
# Get PLLN, PLL_NUM, and PLL_DEN
pll = float(1 if VCO_DIV is None else VCO_DIV) * synth_mhz / ref_signal
PLL_N = int(pll)
frac = pll - PLL_N
if frac < 1.0/(1<<22): # smallest fraction on the synth
PLL_NUM = 0
PLL_DEN = 100
else:
fraction = _frac.Fraction(frac).limit_denominator(1<<22)
PLL_NUM = fraction.numerator
PLL_DEN = fraction.denominator
return (PLL_N, PLL_NUM, PLL_DEN, VCO_DIV)
def setFreq(self, synth_mhz):
self.setWord(1, 'NO_FCAL')
PLL_N, PLL_NUM, PLL_DEN, VCO_DIV = self.get_osc_values(synth_mhz,self.FOSC)
# Select the VCO frequency
# VCO1: 1800 to 2270 NHz
# VCO2: 2135 to 2720 MHz
# VCO3: 2610 to 3220 MHz
# VCO4: 3075 to 3800 MHz
freq_vco = self.freq_pd * (PLL_N + float(PLL_NUM)/PLL_DEN)
if freq_vco >= 1800 and freq_vco <= 2270:
VCO_SEL = 0
elif freq_vco >= 2135 and freq_vco <= 2720:
VCO_SEL = 1
elif freq_vco >= 2610 and freq_vco <= 3220:
VCO_SEL = 2
elif freq_vco >= 3075 and freq_vco <= 3800:
VCO_SEL = 3
else:
raise ValueError('VCO frequency is out of range.')
self.setWord(VCO_SEL, 'VCO_SEL')
# Dithering is set in R0, but it is needed for R1 stuff.
if PLL_NUM and PLL_DEN > 200 and not PLL_DEN % 2 and not PLL_DEN % 3:
FRAC_DITHER = 2
else:
FRAC_DITHER = 3
self.setWord(FRAC_DITHER, 'FRAC_DITHER')
# Get the Fractional modulator order
if not PLL_NUM:
FRAC_ORDER = 0
elif PLL_DEN < 20:
FRAC_ORDER = 1
elif PLL_DEN % 3 and FRAC_DITHER == 3:
FRAC_ORDER = 3
else:
FRAC_ORDER = 2
self.setWord(FRAC_ORDER, 'FRAC_ORDER')
# Here is the booting sequence after changing frequency according to 8.5.3
# 1. (optional) If the OUTx_MUX State is changing, program Register R5
# 2. (optional) If the VCO_DIV state is changing, program Register R3.
# See VCO_DIV[4:0] - VCO Divider Value if programming a to a value of 4.
if VCO_DIV == None:
self.setWord(0, 'OUTA_MUX')
self.setWord(0, 'OUTB_MUX')
else:
self.setWord(1, 'OUTA_MUX')
self.setWord(1, 'OUTB_MUX')
VCO_DIV = VCO_DIV / 2 - 1
self.setWord(VCO_DIV, 'VCO_DIV')
# 3. (optional) If the MSB of the fractional numerator or charge pump gain
# is changing, program register R1
PLL_NUM_H = (PLL_NUM & 0b1111111111000000000000) >> 12
PLL_NUM_L = PLL_NUM & 0b0000000000111111111111
self.setWord(PLL_DEN, 'PLL_DEN')
self.setWord(PLL_NUM_H, 'PLL_NUM_H')
self.setWord(PLL_NUM_L, 'PLL_NUM_L')
self.setWord(PLL_N, 'PLL_N')
# 4. (Required) Program register R0
# Activate frequency calibration
self.setWord(0, 'NO_FCAL')
# Sleep 20ms
time.sleep(0.02)
self.setWord(0, 'NO_FCAL')
if self.getDiagnoses('LD_PINSTATE'):
return True
else:
logging.error('LMX2581 not locked')
return False
def write(self, data, addr=None, mask=None):
if mask != None and addr != None:
r = self.read(addr)
r = self._set(r, data, mask)
self.write(r, addr)
elif mask == None and addr != None:
cmd = (data & 0xfffffff0) | (addr & 0xf)
self._write(cmd)
elif mask == None and addr == None:
self._write(data)
else:
raise ValueError("Invalid parameters")
def read(self, addr):
rid = self.getRegId('RDADDR')
# Tell LMX2581 which register to read
r06 = self._set(0x400, addr, self.DICTS[rid]['RDADDR'])
self.write(r06, rid)
# Read the register by issuing a dummy write
self.write(self.CMD10)
return self._read()
def _set(self, d1, d2, mask=None):
# Update some bits of d1 with d2, while keep other bits unchanged
if mask:
d1 = d1 & ~mask
d2 = d2 * (mask & -mask)
return d1 | d2
def _get(self, data, mask):
data = data & mask
return data / (mask & -mask)
def reset(self):
self.setWord(1,'RESET')
def getDiagnoses(self,name=None):
diag = self.read(6)
if name:
if name not in self.MASK_DIAG:
raise ValueError("Invalid parameter")
mask = self.MASK_DIAG.get(name)
return self._get(diag, mask)
else:
result = {}
for name,mask in self.MASK_DIAG.items():
result[name] = self._get(diag, mask)
return result
def getRegister(self,rid=None):
if rid==None:
return [self.getRegister(regId) for regId in self.A_DICT_LIST]
elif rid in self.A_DICT_LIST:
rval = self.read(rid)
return {name: self._get(rval,mask) for name, mask in self.DICTS[rid].items()}
else:
raise ValueError("Invalid parameter")
def getWord(self,name):
rid = self.getRegId(name)
rval = self.read(rid)
return self._get(rval,self.DICTS[rid][name])
def setWord(self,value,name):
rid = self.getRegId(name)
self.write(value,rid,self.DICTS[rid][name])
def getRegId(self,name):
rid = None
for d in [self.DICTS[a] for a in self.A_DICT_LIST]:
if name in d:
rid = self.DICTS.index(d)
break
if rid == None:
raise ValueError("Invalid parameter")
return rid
def loadCfgFromFile(self,filename):
f = open(filename)
lines = [l.split("\t") for l in f.read().splitlines()]
regs = [int(l[1].rstrip(),0) for l in lines]
for reg in regs:
self.write(reg)
if self.getDiagnoses('LD_PINSTATE'):
return True
else:
logging.error('LMX2581 not locked')
return False