-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmain.py
317 lines (246 loc) · 12.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#
# author: Sachin Mehta
# Project Description: This repository contains source code for semantically segmenting WSIs; however, it could be easily
# adapted for other domains such as natural image segmentation
# File Description: This file contains the code for training and validation
# ==============================================================================
import loadData as ld
import os
import torch
import pickle
import Model as net
from torch.autograd import Variable
import VisualizeGraph as viz
from Criteria import CrossEntropyLoss2d
import torch.backends.cudnn as cudnn
import torch.optim.lr_scheduler
import Transforms as myTransforms
import DataSet as myDataLoader
import time
from argparse import ArgumentParser
from IOUEval import iouEval
import numpy as np
def val(args, val_loader, model, criterion):
# switch to evaluation mode
model.eval()
iouEvalVal = iouEval(args.classes)
epoch_loss = []
total_batches = len(val_loader)
for i, (input, target) in enumerate(val_loader):
start_time = time.time()
if args.onGPU == True:
input = input.cuda()
target = target.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# run the mdoel
output = model(input_var)
# compute the loss
loss = criterion(output, target_var)
epoch_loss.append(loss.data[0])
time_taken = time.time() - start_time
# compute the confusion matrix
iouEvalVal.addBatch(output.max(1)[1].data, target_var.data)
print('[%d/%d] loss: %.3f time: %.2f' % (i, total_batches, loss.data[0], time_taken))
average_epoch_loss_val = sum(epoch_loss) / len(epoch_loss)
overall_acc, per_class_acc, per_class_iu, mIOU = iouEvalVal.getMetric()
return average_epoch_loss_val, overall_acc, per_class_acc, per_class_iu, mIOU
def train(args, train_loader, model, criterion, optimizer, epoch):
# switch to train mode
model.train()
iouEvalTrain = iouEval(args.classes)
epoch_loss = []
total_batches = len(train_loader)
for i, (input, target) in enumerate(train_loader):
start_time = time.time()
if args.onGPU == True:
input = input.cuda()
target = target.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# run the mdoel
output = model(input_var)
# set the grad to zero
optimizer.zero_grad()
loss = criterion(output, target_var)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss.append(loss.data[0])
time_taken = time.time() - start_time
# compute the confusion matrix
iouEvalTrain.addBatch(output.max(1)[1].data, target_var.data)
print('[%d/%d] loss: %.3f time:%.2f' % (i, total_batches, loss.data[0], time_taken))
average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
overall_acc, per_class_acc, per_class_iu, mIOU = iouEvalTrain.getMetric()
return average_epoch_loss_train, overall_acc, per_class_acc, per_class_iu, mIOU
def save_checkpoint(state, filenameCheckpoint='checkpoint.pth.tar'):
torch.save(state, filenameCheckpoint)
def trainValidateSegmentation(args):
# check if processed data file exists or not
if not os.path.isfile(args.cached_data_file):
dataLoader = ld.LoadData(args.data_dir, args.classes, args.cached_data_file)
if dataLoader is None:
print('Error while processing the data. Please check')
exit(-1)
data = dataLoader.processData()
else:
data = pickle.load(open(args.cached_data_file, "rb"))
if args.modelType == 'C1':
model = net.ResNetC1(args.classes)
elif args.modelType == 'D1':
model = net.ResNetD1(args.classes)
else:
print('Please select the correct model. Exiting!!')
exit(-1)
args.savedir = args.savedir + args.modelType + '/'
if args.onGPU == True:
model = model.cuda()
# create the directory if not exist
if not os.path.exists(args.savedir):
os.mkdir(args.savedir)
if args.onGPU == True:
model = model.cuda()
if args.visualizeNet == True:
x = Variable(torch.randn(1, 3, args.inWidth, args.inHeight))
if args.onGPU == True:
x = x.cuda()
y = model.forward(x)
g = viz.make_dot(y)
g.render(args.savedir + '/model.png', view=False)
n_param = sum([np.prod(param.size()) for param in model.parameters()])
print('Network parameters: ' + str(n_param))
# define optimization criteria
print('Weights to handle class-imbalance')
weight = torch.from_numpy(data['classWeights']) # convert the numpy array to torch
print(weight)
if args.onGPU == True:
weight = weight.cuda()
criteria = CrossEntropyLoss2d(weight) # weight
if args.onGPU == True:
criteria = criteria.cuda()
trainDatasetNoZoom = myTransforms.Compose([
# myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.RandomCropResize(20),
myTransforms.RandomHorizontalFlip(),
myTransforms.ToTensor(args.scaleIn)
])
trainDatasetWithZoom = myTransforms.Compose([
# myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.Zoom(512, 512),
myTransforms.RandomCropResize(20),
myTransforms.RandomHorizontalFlip(),
myTransforms.ToTensor(args.scaleIn)
])
valDataset = myTransforms.Compose([
# myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.ToTensor(args.scaleIn)
])
trainLoaderNoZoom = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['trainIm'], data['trainAnnot'], transform=trainDatasetNoZoom),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
trainLoaderWithZoom = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['trainIm'], data['trainAnnot'], transform=trainDatasetWithZoom),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
valLoader = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['valIm'], data['valAnnot'], transform=valDataset),
batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
# define the optimizer
# optimizer = torch.optim.Adam(model.parameters(), args.lr, (0.9, 0.999), eps=1e-08, weight_decay=2e-4)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
if args.onGPU == True:
cudnn.benchmark = True
start_epoch = 0
if args.resume:
if os.path.isfile(args.resumeLoc):
print("=> loading checkpoint '{}'".format(args.resumeLoc))
checkpoint = torch.load(args.resumeLoc)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
logFileLoc = args.savedir + os.sep + args.logFile
if os.path.isfile(logFileLoc):
logger = open(logFileLoc, 'a')
logger.write("Parameters: %s" % (str(n_param)))
logger.write("\n%s\t%s\t%s\t%s\t%s\t" % ('Epoch', 'Loss(Tr)', 'Loss(val)', 'mIOU (tr)', 'mIOU (val'))
logger.flush()
else:
logger = open(logFileLoc, 'w')
logger.write("Parameters: %s" % (str(n_param)))
logger.write("\n%s\t%s\t%s\t%s\t%s\t" % ('Epoch', 'Loss(Tr)', 'Loss(val)', 'mIOU (tr)', 'mIOU (val'))
logger.flush()
#lr scheduler
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_loss, gamma=0.1)
for epoch in range(start_epoch, args.max_epochs):
scheduler.step(epoch)
lr = 0
for param_group in optimizer.param_groups:
lr = param_group['lr']
# run at zoomed images first
train(args, trainLoaderWithZoom, model, criteria, optimizer, epoch)
lossTr, overall_acc_tr, per_class_acc_tr, per_class_iu_tr, mIOU_tr = train(args, trainLoaderNoZoom, model,
criteria, optimizer, epoch)
# evaluate on validation set
lossVal, overall_acc_val, per_class_acc_val, per_class_iu_val, mIOU_val = val(args, valLoader, model, criteria)
save_checkpoint({
'epoch': epoch + 1,
'arch': str(model),
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lossTr': lossTr,
'lossVal': lossVal,
'iouTr': mIOU_tr,
'iouVal': mIOU_val,
}, args.savedir + '/checkpoint.pth.tar')
# save the model also
model_file_name = args.savedir + '/model_' + str(epoch + 1) + '.pth'
torch.save(model.state_dict(), model_file_name)
with open(args.savedir + 'acc_' + str(epoch) + '.txt', 'w') as log:
log.write(
"\nEpoch: %d\t Overall Acc (Tr): %.4f\t Overall Acc (Val): %.4f\t mIOU (Tr): %.4f\t mIOU (Val): %.4f" % (
epoch, overall_acc_tr, overall_acc_val, mIOU_tr, mIOU_val))
log.write('\n')
log.write('Per Class Training Acc: ' + str(per_class_acc_tr))
log.write('\n')
log.write('Per Class Validation Acc: ' + str(per_class_acc_val))
log.write('\n')
log.write('Per Class Training mIOU: ' + str(per_class_iu_tr))
log.write('\n')
log.write('Per Class Validation mIOU: ' + str(per_class_iu_val))
logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" % (epoch, lossTr, lossVal, mIOU_tr, mIOU_val, lr))
logger.flush()
print("Epoch : " + str(epoch) + ' Details')
print("\nEpoch No.: %d\tTrain Loss = %.4f\tVal Loss = %.4f\t mIOU(tr) = %.4f\t mIOU(val) = %.4f" % (
epoch, lossTr, lossVal, mIOU_tr, mIOU_val))
logger.close()
if __name__ == '__main__':
parser = ArgumentParser(description='Training YNet')
parser.add_argument('--model', default="YNet", help='Name of the network')
parser.add_argument('--data_dir', default="./data/", help='Data directory')
parser.add_argument('--inWidth', type=int, default=384, help='Width of the input patch')
parser.add_argument('--inHeight', type=int, default=384, help='Height of the input patch')
parser.add_argument('--scaleIn', type=int, default=1, help='scaling factor for training the models at '
'low resolution first and then full resolution.'
'We did not use it.')
parser.add_argument('--max_epochs', type=int, default=100, help='Max. number of epochs')
parser.add_argument('--num_workers', type=int, default=4, help='Number of workers for processing the data')
parser.add_argument('--batch_size', type=int, default=10, help='batch ize')
parser.add_argument('--step_loss', type=int, default=100, help='decay the learning rate after these many epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--savedir', default='./results', help='results directory')
parser.add_argument('--visualizeNet', type=bool, default=True)
parser.add_argument('--resume', type=bool, default=False, help='Use this flag to load the last checkpoint for training')
parser.add_argument('--resumeLoc', default='./results_C1/checkpoint.pth.tar', help='checkpoint location')
parser.add_argument('--classes', type=int, default=8, help='Number of classes in the dataset')
parser.add_argument('--cached_data_file', default='ynet_cache.p', help='Data file names and other values, such as'
'class weights, are cached')
parser.add_argument('--logFile', default='trainValLog.txt', help="Log file")
parser.add_argument('--onGPU', default=True, help='True if you want to train on GPU')
parser.add_argument('--modelType', default='C1', help='Model could be C1 or D1')
args = parser.parse_args()
assert args.modelType in ['C1', 'D1']
args.savedir = args.savedir + '_' + args.modelType + os.sep # update the save dir name with model type
trainValidateSegmentation(args)