Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PyTorch implementation #3

Open
reachablesa opened this issue Dec 21, 2017 · 1 comment
Open

PyTorch implementation #3

reachablesa opened this issue Dec 21, 2017 · 1 comment

Comments

@reachablesa
Copy link

Hi,

I am trying to implement conv-large in PyTorch.

When I try to replicate your convnet; namely: "conv-large" the network did not work at all. Here, I am copying my code for conv-large in PyTorch. I would appreciate if you can give me a feedback on what might be wrong.

import torch.nn as nn
import torch.nn.functional as F

class conv_large(nn.Module):
def init(self):
super(conv_large, self).init()

self.lr = nn.LeakyReLU(0.1)
self.mp2_2 = nn.MaxPool2d(2, stride=2, padding=0)
self.drop = nn.Dropout(p = 0.5)

self.bn128 = nn.BatchNorm2d(128, affine=True)
self.bn256 = nn.BatchNorm2d(256, affine=True)
self.bn512 = nn.BatchNorm2d(512, affine=True)

self.conv3_128_3_1 = nn.Conv2d(3, 128, kernel_size=3, stride=1, padding=1);         

self.conv128_128_3_1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1);
self.conv128_256_3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1);
self.conv256_256_3_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1);

self.conv256_512_3_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=0);
self.conv512_256_1_1 = nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0);
self.conv256_128_1_1 = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0);

self.avg = nn.AvgPool2d(6, ceil_mode=True) # global average pooling
self.fc = nn.Linear(128, 10)

def forward(self, x):
x = self.conv3_128_3_1(x);

x = self.bn128(x); x = self.lr(x)  

x = self.conv128_128_3_1(x); 

x = self.bn128(x); x = self.lr(x)     
x = self.conv128_128_3_1(x); x = self.bn128(x); x = self.lr(x)   


x = self.mp2_2(x); 
x = self.drop(x)
        
x = self.conv128_256_3_1(x); 
x = self.bn256(x); 
x = self.lr(x)

x = self.conv256_256_3_1(x); 
x = self.bn256(x); x = self.lr(x)

x = self.conv256_256_3_1(x);
x = self.bn256(x); x = self.lr(x)

x = self.mp2_2(x); 
x = self.drop(x)

x = self.conv256_512_3_1(x); 
x = self.bn512(x); x = self.lr(x)

x = self.conv512_256_1_1(x); 
x = self.bn256(x); x = self.lr(x)

x = self.conv256_128_1_1(x); 
x = self.bn128(x); x = self.lr(x)        

x = self.avg(x)
x = x.view(x.size(0),-1)
x = self.fc(x)

return x
@bnu-wangxun
Copy link

Have you finally reimplement it in pytorch? Will you open the code ?
Thanks! @reachablesa

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants