-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
259 lines (176 loc) · 7.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Imports
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
from torchvision.utils import make_grid
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.optim as optim
from src.model import Discrimiator, Generator, initialize_wieghts
import datetime
import argparse
import os
import shutil
from IPython import get_ipython
import wandb
from src import Data
# Read more about this.
os.environ['KMP_DUPLICATE_LIB_OK']='True'
parser = argparse.ArgumentParser(description='######DC GAN PAPER IMPLEMENTATION TRAINING MODULE ########')
parser.add_argument('--wandbkey', metavar='wandbkey', default=None,
help='Key for Weight and Biases Integration')
parser.add_argument('--projectname', metavar='projectname', default="DC_GAN",
help='Key for Weight and Biases Integration')
parser.add_argument('--wandbentity', metavar='wandbentity',
help='Entity for Weight and Biases Integration')
parser.add_argument('--tensorboard', metavar='tensorboard', type=bool, default=True,
help='Tensorboard Integration')
parser.add_argument('--dataset', choices= ['mnist', 'pokemon', 'anime'], type=str.lower, required=True,
help = "Choose the Dataset From MNIST or Pokemon")
parser.add_argument('--kaggle_user',default = None,
help = "Kaggle API creds Required to Download Kaggle Dataset")
parser.add_argument('--kaggle_key', default = None,
help = "Kaggle API creds Required to Download Kaggle Dataset")
parser.add_argument('--batch_size', metavar='batch_size', type=int , default = 32,
help = "Batch_Size")
parser.add_argument('--epoch', metavar='epoch', type=int ,default = 5,
help = "Kaggle API creds Required to Download Kaggle Dataset")
parser.add_argument('--load_checkpoints', metavar='load_checkpoints', default = False,
help = "Kaggle API creds Required to Download Kaggle Dataset")
args = parser.parse_args()
# Initiating Wiegh and biases for logging
shutil.rmtree("logs") if os.path.isdir("logs") else ""
# Hyper Paramerts
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
NUM_EPOCHS = args.epoch
NOISE_DIM = 100
IMG_DIM = 64
lr = 2e-4
BATCH_SIZE = args.batch_size
MAPS_GEN = 64
MAPS_DISC = 64
IMG_CHANNELS = 3
FIXED_NOISE = torch.randn(64, NOISE_DIM, 1, 1).to(DEVICE)
GEN_CHECKPOINT = '{}_Generator.pt'.format(args.projectname)
DISC_CHECKPOINT = '{}_Discremenator.pt'.format(args.projectname)
# Transforms
Trasforms = transforms.Compose([
transforms.Resize(IMG_DIM),
transforms.CenterCrop(IMG_DIM),
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))
])
# Prepare Data
# PokeMon Data
if args.dataset !="MNIST":
Data.kaggle_dataset(args)
# MNIST Still to Implemet in the Data Module
if args.dataset =="MNIST":
Data.MNIST(args)
# Data Loaders
train_dataset = datasets.ImageFolder(root = 'data', transform=Trasforms)
train_loader = DataLoader(train_dataset, batch_size = BATCH_SIZE, shuffle=True, drop_last=True)
if args.wandbkey :
wandb_integration = True
wandb.login(key = args.wandbkey)
wandb.init(project = args.projectname, entity=args.wandbentity, resume=True)
print(wandb.run.name)
# Loading Generator
if os.path.isdir(os.path.join(wandb.run.dir, GEN_CHECKPOINT)) and args.load_checkpoints:
generator = torch.load(wandb.restore(GEN_CHECKPOINT).name)
else:
generator = Generator(noise_channels=NOISE_DIM, img_channels=IMG_CHANNELS, maps=MAPS_GEN).to(DEVICE)
# Loading Discremenator
if os.path.isdir(os.path.join(wandb.run.dir, DISC_CHECKPOINT)) and args.load_checkpoints:
discremenator = torch.load(wandb.restore(DISC_CHECKPOINT).name)
else:
discremenator = Discrimiator(num_channels=IMG_CHANNELS, maps=MAPS_DISC).to(DEVICE)
# weights Initialize
initialize_wieghts(generator)
initialize_wieghts(discremenator)
# Loss and Optimizers
gen_optim = optim.Adam(params = generator.parameters(), lr=lr, betas=(0.5, 0.999))
disc_optim = optim.Adam(params = discremenator.parameters(), lr=lr, betas=(0.5, 0.999))
criterion = nn.BCELoss()
# Tensorboard Implementation
writer_real = SummaryWriter(f"logs/real")
writer_fake = SummaryWriter(f"logs/fake")
if args.wandbkey :
wandb.watch(generator)
wandb.watch(discremenator)
# Code for COLLAB TENSORBOARD VIEW
try:
get_ipython().magic("%load_ext tensorboard")
get_ipython().magic("%tensorboard --logdir logs")
except:
pass
# training
discremenator.train()
generator.train()
step = 0
images = []
for epoch in range(1, NUM_EPOCHS+1):
tqdm_iter = tqdm(enumerate(train_loader), total = len(train_loader), leave = False)
for batch_idx, (data, _) in tqdm_iter:
data = data.to(DEVICE)
batch_size = data.shape[0]
# ====================== Training the Discremnator===============
latent_noise = torch.randn(BATCH_SIZE, NOISE_DIM, 1, 1).to(DEVICE)
fake_img = generator(latent_noise)
disc_fake = discremenator(fake_img.detach()).reshape(-1)
disc_real = discremenator(data).reshape(-1)
disc_fake_loss = criterion(disc_fake, torch.zeros_like(disc_fake))
disc_real_loss = criterion(disc_real, torch.ones_like(disc_real))
disc_loss = (disc_fake_loss+disc_real_loss)/2
discremenator.zero_grad()
disc_loss.backward()
disc_optim.step()
# ====================== Training the Generator===============
# gen_img = generator(latent_noise)
output = discremenator(fake_img).reshape(-1)
gen_loss = criterion(output, torch.ones_like(output))
generator.zero_grad()
gen_loss.backward()
gen_optim.step()
# Logger
tqdm_iter.set_description(f"Epoch [{epoch}/{NUM_EPOCHS}]")
tqdm_iter.set_postfix(disc_loss = "{0:.4f}".format(disc_loss.item()), gen_loss = "{0:.4f}".format(gen_loss.item()))
# for Tensorboard
if batch_idx % 30 == 0 :
torch.save(generator.state_dict(), os.path.join("weights", GEN_CHECKPOINT))
torch.save(discremenator.state_dict(), os.path.join("weights", DISC_CHECKPOINT))
if args.tensorboard:
GAN_gen = generator(FIXED_NOISE)
img_grid_real = make_grid(data[:32], normalize=True)
img_grid_fake = make_grid(GAN_gen[:32], normalize=True)
writer_real.add_image("Real", img_grid_real, global_step=step)
writer_fake.add_image("Fake", img_grid_fake, global_step=step)
images.append(img_grid_fake.cpu().detach().numpy())
step +=1
if args.wandbkey:
wandb.log({"Discremenator Loss": disc_loss.item(), "Generator Loss": gen_loss.item()})
wandb.log({"img": [wandb.Image(img_grid_fake, caption=step)]})
torch.save(generator.state_dict(), os.path.join(wandb.run.dir, GEN_CHECKPOINT))
torch.save(discremenator.state_dict(), os.path.join(wandb.run.dir, DISC_CHECKPOINT))
import numpy as np
from IPython.display import HTML
import matplotlib
import matplotlib.pyplot as plt
from tqdm import tqdm
matplotlib.rcParams['animation.embed_limit'] = 2**64
fig = plt.figure(figsize=(8,8))
plt.axis("off")
ims = []
from matplotlib import animation
for j,i in tqdm(enumerate(images)):
ims.append([plt.imshow(np.transpose(i,(1,2,0)), animated=True)])
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)
HTML(ani.to_jshtml())
f = "animation{}.gif".format(datetime.datetime.now()).replace(":","")
from matplotlib.animation import PillowWriter
ani.save(os.path.join(wandb.run.dir,f), writer=PillowWriter(fps=20))
ani.save(f, writer=PillowWriter(fps=20))
# is this change got recorde