-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCachedEmbedding.py
209 lines (162 loc) · 7.78 KB
/
CachedEmbedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# Author: Michi Amsler
## Date: 2018
from gensim.models import Word2Vec, KeyedVectors
from time import time
import fasttext
import numpy as np
from functools import lru_cache
# how to use this:
# import CachedEmbedding
# my_emb = CachedEmbedding.CachedEmbedding(
# given_embedding_file="./smd_50k_kv",
# cache_size_get_embedding=20000,
# cache_size_most_similar=1000)
# my_emb.prepare()
# my_emb.get_most_similars_cached(positive = ("Hund", "Katze"))
# my_emb.get_embedding_cached("Hund")
class CachedEmbedding(object):
def __init__(self,
given_embedding_file=None,
embedding_model=None,
embedding_style="w2v",
cache_size_get_embedding=10000,
cache_size_most_similar=10000,
language=None,
**kwargs,
):
self.given_embedding_file = given_embedding_file
self.embedding_model = embedding_model
self.embedding_style = embedding_style
self.cache_size_get_embedding = cache_size_get_embedding
self.cache_size_most_similar = cache_size_most_similar
self.language = language
def load_embeddings(self, given_model_name=None, mode="w2v", language=None):
"""wrapper for embedding loader
"""
# check if we have an overwrite:
if given_model_name is not None:
model_file_to_read_from = given_model_name
else:
model_file_to_read_from = self.given_embedding_file
if mode == "w2vkv":
print("we have a keyed vector model")
self.load_w2v_model(given_model_name=model_file_to_read_from, kv=True)
elif mode == "w2v":
self.load_w2v_model(given_model_name=model_file_to_read_from)
elif mode == "plaintext":
self.load_plain_text(model_file_to_read_from)
elif mode == "fasttext":
self.load_fasttext_model(model_file_to_read_from)
elif mode == "pymagnitude":
if language is None:
self.load_pymagnitude_model(given_model_name=model_file_to_read_from)
else:
self.load_pymagnitude_model(
given_model_name=model_file_to_read_from, language=language)
else:
print("not yet implemented!")
return
def load_plain_text(self, given_model_name):
print("loading plain text model model {} ...".format(given_model_name))
self.embedding_model = KeyedVectors.load_word2vec_format(given_model_name,
binary=False)
print("Done")
def load_fasttext_model(self, given_model_name):
self.embedding_model = FastTextEmbedding(given_model_name)
def load_w2v_model(self, given_model_name=None, kv=False):
'''load models; simple wrapper'''
t0 = time()
if kv:
print("loading with keyedvectors method")
self.embedding_model = KeyedVectors.load(given_model_name, mmap="r")
print("... done in %0.3fs." % (time() - t0))
return
print("loading w2v model {} ...".format(given_model_name))
try:
self.embedding_model = Word2Vec.load(given_model_name, mmap="r")
except:
print("trying loading with keyedvectors method")
self.embedding_model = KeyedVectors.load(given_model_name, mmap="r")
print("... done in %0.3fs." % (time() - t0))
return
def load_pymagnitude_model(self, given_model_name=None, language=None):
'''load models; simple wrapper'''
t0 = time()
# ugly but from tut:
import pymagnitude
print("loading pymagnitude model {} ...".format(given_model_name))
if language is None:
self.embedding_model = pymagnitude.Magnitude(given_model_name)
else:
self.embedding_model = pymagnitude.Magnitude(given_model_name, language=language)
print("... done in %0.3fs." % (time() - t0))
print("initializing for most_similar-searches...")
t0 = time()
print(self.embedding_model.most_similar(positive=["test"]))
print("... done in %0.3fs." % (time() - t0))
return
def prepare(self, with_given_model=False):
if not with_given_model:
# first load the embeddings; e.g., w2v or pymagnitude
self.load_embeddings(mode=self.embedding_style)
else:
# suppose we just need the wrapper; no loading needed:
pass
if self.embedding_style in ["w2v", "w2vkv", "plaintext"]:
# we create this cached functions here, since we need the maxsize
@lru_cache(maxsize=self.cache_size_get_embedding)
def get_embedding(token_given=None):
return self.embedding_model.wv[token_given]
# Comment: since we try to cache the function
# we have to call it with a TUPLE as input for the positive argument
@lru_cache(maxsize=self.cache_size_most_similar)
def get_most_similars(positive=None, topn=50):
return self.embedding_model.wv.most_similar(positive=positive, topn=topn)
elif self.embedding_style == "pymagnitude":
# we create this cached functions here, since we need the maxsize
@lru_cache(maxsize=self.cache_size_get_embedding)
def get_embedding(token_given=None):
return self.embedding_model.query(token_given)
# Comment: since we try to cache the function
# we have to call it with a TUPLE as input for the positive argument
@lru_cache(maxsize=self.cache_size_most_similar)
def get_most_similars(positive=None, topn=50):
return self.embedding_model.most_similar(positive=list(positive), topn=topn)
elif self.embedding_style == "fasttext":
@lru_cache(maxsize=self.cache_size_get_embedding)
def get_embedding(token_given=None):
return self.embedding_model.get_vector(token_given)
@lru_cache(maxsize=self.cache_size_most_similar)
def get_most_similars(positive=None, topn=50):
return self.embedding_model.get_nearest_neighbors(seed_set=positive,
k=topn,
exclude_seedset=False)
# make them available
self.get_embedding_cached = get_embedding
self.get_most_similars_cached = get_most_similars
return
class FastTextEmbedding(object):
"Code largely taken from https://github.com/facebookresearch/fastText/issues/384"
def __init__(self, model_file):
self.model = fasttext.load_model(model_file)
self.words = self.model.get_words()
self.word_vectors = np.array([self.model[w] for w in self.words])
def get_nearest_neighbors(self, seed_set, k=10, exclude_seedset=True):
query = np.sum([self.model[w] for w in seed_set], axis=0)
norms = np.sqrt((query**2).sum() * (self.word_vectors**2).sum(axis=1))
cossims = np.matmul(self.word_vectors, query) / norms
n_to_sort = k
if exclude_seedset:
n_to_sort += len(seed_set)
rank = range(len(cossims)-n_to_sort, len(cossims))
result_idx = np.argpartition(cossims, rank)[-n_to_sort:][::-1]
result = [(self.words[idx], cossims[idx])
for idx in result_idx
if self.words[idx] not in seed_set or not exclude_seedset]
if exclude_seedset:
result = result[:k]
return result
def get_vector(self, token):
return self.model[token]