-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathshadertoy_glsl_stone.py
287 lines (252 loc) · 7.77 KB
/
shadertoy_glsl_stone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from wgpu_shadertoy import Shadertoy
# shadertoy source: https://www.shadertoy.com/view/ldSSzV by TDM
shader_code = """
/*
"Wet stone" by Alexander Alekseev aka TDM - 2014
License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Contact: [email protected]
*/
#define SMOOTH
//#define AA
const int NUM_STEPS = 32;
const int AO_SAMPLES = 4;
const vec2 AO_PARAM = vec2(1.2, 3.5);
const vec2 CORNER_PARAM = vec2(0.25, 40.0);
const float INV_AO_SAMPLES = 1.0 / float(AO_SAMPLES);
const float TRESHOLD = 0.1;
const float EPSILON = 1e-3;
const float LIGHT_INTENSITY = 0.25;
const vec3 RED = vec3(1.0,0.7,0.7) * LIGHT_INTENSITY;
const vec3 ORANGE = vec3(1.0,0.67,0.43) * LIGHT_INTENSITY;
const vec3 BLUE = vec3(0.54,0.77,1.0) * LIGHT_INTENSITY;
const vec3 WHITE = vec3(1.2,1.07,0.98) * LIGHT_INTENSITY;
const float DISPLACEMENT = 0.1;
// math
mat3 fromEuler(vec3 ang) {
vec2 a1 = vec2(sin(ang.x),cos(ang.x));
vec2 a2 = vec2(sin(ang.y),cos(ang.y));
vec2 a3 = vec2(sin(ang.z),cos(ang.z));
mat3 m;
m[0] = vec3(a1.y*a3.y+a1.x*a2.x*a3.x,a1.y*a2.x*a3.x+a3.y*a1.x,-a2.y*a3.x);
m[1] = vec3(-a2.y*a1.x,a1.y*a2.y,a2.x);
m[2] = vec3(a3.y*a1.x*a2.x+a1.y*a3.x,a1.x*a3.x-a1.y*a3.y*a2.x,a2.y*a3.y);
return m;
}
vec3 saturation(vec3 c, float t) {
return mix(vec3(dot(c,vec3(0.2126,0.7152,0.0722))),c,t);
}
float hash11(float p) {
return fract(sin(p * 727.1)*435.545);
}
float hash12(vec2 p) {
float h = dot(p,vec2(127.1,311.7));
return fract(sin(h)*437.545);
}
vec3 hash31(float p) {
vec3 h = vec3(127.231,491.7,718.423) * p;
return fract(sin(h)*435.543);
}
// 3d noise
float noise_3(in vec3 p) {
vec3 i = floor(p);
vec3 f = fract(p);
vec3 u = f*f*(3.0-2.0*f);
vec2 ii = i.xy + i.z * vec2(5.0);
float a = hash12( ii + vec2(0.0,0.0) );
float b = hash12( ii + vec2(1.0,0.0) );
float c = hash12( ii + vec2(0.0,1.0) );
float d = hash12( ii + vec2(1.0,1.0) );
float v1 = mix(mix(a,b,u.x), mix(c,d,u.x), u.y);
ii += vec2(5.0);
a = hash12( ii + vec2(0.0,0.0) );
b = hash12( ii + vec2(1.0,0.0) );
c = hash12( ii + vec2(0.0,1.0) );
d = hash12( ii + vec2(1.0,1.0) );
float v2 = mix(mix(a,b,u.x), mix(c,d,u.x), u.y);
return max(mix(v1,v2,u.z),0.0);
}
// fBm
float fbm3(vec3 p, float a, float f) {
return noise_3(p);
}
float fbm3_high(vec3 p, float a, float f) {
float ret = 0.0;
float amp = 1.0;
float frq = 1.0;
for(int i = 0; i < 5; i++) {
float n = pow(noise_3(p * frq),2.0);
ret += n * amp;
frq *= f;
amp *= a * (pow(n,0.2));
}
return ret;
}
// lighting
float diffuse(vec3 n,vec3 l,float p) { return pow(max(dot(n,l),0.0),p); }
float specular(vec3 n,vec3 l,vec3 e,float s) {
float nrm = (s + 8.0) / (3.1415 * 8.0);
return pow(max(dot(reflect(e,n),l),0.0),s) * nrm;
}
// distance functions
float plane(vec3 gp, vec4 p) {
return dot(p.xyz,gp+p.xyz*p.w);
}
float sphere(vec3 p,float r) {
return length(p)-r;
}
float capsule(vec3 p,float r,float h) {
p.y -= clamp(p.y,-h,h);
return length(p)-r;
}
float cylinder(vec3 p,float r,float h) {
return max(abs(p.y/h),capsule(p,r,h));
}
float box(vec3 p,vec3 s) {
p = abs(p)-s;
return max(max(p.x,p.y),p.z);
}
float rbox(vec3 p,vec3 s) {
p = abs(p)-s;
return length(p-min(p,0.0));
}
float quad(vec3 p,vec2 s) {
p = abs(p) - vec3(s.x,0.0,s.y);
return max(max(p.x,p.y),p.z);
}
// boolean operations
float boolUnion(float a,float b) { return min(a,b); }
float boolIntersect(float a,float b) { return max(a,b); }
float boolSub(float a,float b) { return max(a,-b); }
// smooth operations. thanks to iq
float boolSmoothIntersect(float a, float b, float k ) {
float h = clamp(0.5+0.5*(b-a)/k, 0.0, 1.0);
return mix(a,b,h) + k*h*(1.0-h);
}
float boolSmoothSub(float a, float b, float k ) {
return boolSmoothIntersect(a,-b,k);
}
// world
float rock(vec3 p) {
float d = sphere(p,1.0);
for(int i = 0; i < 9; i++) {
float ii = float(i);
float r = 2.5 + hash11(ii);
vec3 v = normalize(hash31(ii) * 2.0 - 1.0);
#ifdef SMOOTH
d = boolSmoothSub(d,sphere(p+v*r,r * 0.8), 0.03);
#else
d = boolSub(d,sphere(p+v*r,r * 0.8));
#endif
}
return d;
}
float map(vec3 p) {
float d = rock(p) + fbm3(p*4.0,0.4,2.96) * DISPLACEMENT;
d = boolUnion(d,plane(p,vec4(0.0,1.0,0.0,1.0)));
return d;
}
float map_detailed(vec3 p) {
float d = rock(p) + fbm3_high(p*4.0,0.4,2.96) * DISPLACEMENT;
d = boolUnion(d,plane(p,vec4(0.0,1.0,0.0,1.0)));
return d;
}
// tracing
vec3 getNormal(vec3 p, float dens) {
vec3 n;
n.x = map_detailed(vec3(p.x+EPSILON,p.y,p.z));
n.y = map_detailed(vec3(p.x,p.y+EPSILON,p.z));
n.z = map_detailed(vec3(p.x,p.y,p.z+EPSILON));
return normalize(n-map_detailed(p));
}
vec2 getOcclusion(vec3 p, vec3 n) {
vec2 r = vec2(0.0);
for(int i = 0; i < AO_SAMPLES; i++) {
float f = float(i)*INV_AO_SAMPLES;
float hao = 0.01+f*AO_PARAM.x;
float hc = 0.01+f*CORNER_PARAM.x;
float dao = map(p + n * hao) - TRESHOLD;
float dc = map(p - n * hc) - TRESHOLD;
r.x += clamp(hao-dao,0.0,1.0) * (1.0-f);
r.y += clamp(hc+dc,0.0,1.0) * (1.0-f);
}
r.x = clamp(1.0-r.x*INV_AO_SAMPLES*AO_PARAM.y,0.0,1.0);
r.y = clamp(r.y*INV_AO_SAMPLES*CORNER_PARAM.y,0.0,1.0);
return r;
}
vec2 spheretracing(vec3 ori, vec3 dir, out vec3 p) {
vec2 td = vec2(0.0);
for(int i = 0; i < NUM_STEPS; i++) {
p = ori + dir * td.x;
td.y = map(p);
if(td.y < TRESHOLD) break;
td.x += (td.y-TRESHOLD) * 0.9;
}
return td;
}
// stone
vec3 getStoneColor(vec3 p, float c, vec3 l, vec3 n, vec3 e) {
c = min(c + pow(noise_3(vec3(p.x*20.0,0.0,p.z*20.0)),70.0) * 8.0, 1.0);
float ic = pow(1.0-c,0.5);
vec3 base = vec3(0.42,0.3,0.2) * 0.35;
vec3 sand = vec3(0.51,0.41,0.32)*0.9;
vec3 color = mix(base,sand,c);
float f = pow(1.0 - max(dot(n,-e),0.0), 5.0) * 0.75 * ic;
color += vec3(diffuse(n,l,0.5) * WHITE);
color += vec3(specular(n,l,e,8.0) * WHITE * 1.5 * ic);
n = normalize(n - normalize(p) * 0.4);
color += vec3(specular(n,l,e,80.0) * WHITE * 1.5 * ic);
color = mix(color,vec3(1.0),f);
color *= sqrt(abs(p.y*0.5+0.5)) * 0.4 + 0.6;
color *= (n.y * 0.5 + 0.5) * 0.4 + 0.6;
return color;
}
vec3 getPixel(in vec2 coord, float time) {
vec2 iuv = coord / iResolution.xy * 2.0 - 1.0;
vec2 uv = iuv;
uv.x *= iResolution.x / iResolution.y;
// ray
vec3 ang = vec3(0.0,0.2,time);
if(iMouse.z > 0.0) ang = vec3(0.0,clamp(2.0-iMouse.y*0.01,0.0,3.1415),iMouse.x*0.01);
mat3 rot = fromEuler(ang);
vec3 ori = vec3(0.0,0.0,2.8);
vec3 dir = normalize(vec3(uv.xy,-2.0));
ori = ori * rot;
dir = dir * rot;
// tracing
vec3 p;
vec2 td = spheretracing(ori,dir,p);
vec3 n = getNormal(p,td.y);
vec2 occ = getOcclusion(p,n);
vec3 light = normalize(vec3(0.0,1.0,0.0));
// color
vec3 color = vec3(1.0);
if(td.x < 3.5 && p.y > -0.89) color = getStoneColor(p,occ.y,light,n,dir);
color *= occ.x;
return color;
}
// main
void mainImage( out vec4 fragColor, in vec2 fragCoord ) {
float time = iTime * 0.3;
#ifdef AA
vec3 color = vec3(0.0);
for(int i = -1; i <= 1; i++)
for(int j = -1; j <= 1; j++) {
vec2 uv = fragCoord+vec2(i,j)/3.0;
color += getPixel(uv, time);
}
color /= 9.0;
#else
vec3 color = getPixel(fragCoord, time);
#endif
color = sqrt(color);
color = saturation(color,1.7);
// vignette
vec2 iuv = fragCoord / iResolution.xy * 2.0 - 1.0;
float vgn = smoothstep(1.2,0.7,abs(iuv.y)) * smoothstep(1.1,0.8,abs(iuv.x));
color *= 1.0 - (1.0 - vgn) * 0.15;
fragColor = vec4(color,1.0);
}
"""
shader = Shadertoy(shader_code)
if __name__ == "__main__":
shader.show()