-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbikeshare.py
263 lines (191 loc) · 8.98 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import time
import pandas as pd
import numpy as np
import json
from input_util import get_user_input
CITY_DATA = { 'chicago': 'chicago.csv',
'new york': 'new_york_city.csv',
'washington': 'washington.csv' }
CITIES = ['chicago', 'new york', 'washington']
MONTHS = ['january', 'february', 'march', 'april', 'may', 'june']
DAYS = ['sunday', 'monday', 'tuesday', 'wednesday', \
'thursday', 'friday', 'saturday' ]
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
while True:
city = input('Which city do you want to explore Chicago, New York or Washington? \n> ').lower()
if city in CITIES:
break
# get user input for month (all, january, february, ... , june)
month = get_user_input('All right! now it\'s time to provide us a month name '\
'or just say \'all\' to apply no month filter. \n(e.g. all, january, february, march, april, may, june) \n> ', MONTHS)
# get user input for day of week (all, monday, tuesday, ... sunday)
day = get_user_input('One last thing. Could you type one of the week day you want to analyze?'\
' You can type \'all\' again to apply no day filter. \n(e.g. all, monday, sunday) \n> ', DAYS)
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week and hour from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
df['hour'] = df['Start Time'].dt.hour
# filter by month if applicable
if month != 'all':
month = MONTHS.index(month) + 1
df = df[ df['month'] == month ]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[ df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# display the most common month
most_common_month = df['month'].value_counts().idxmax()
print("The most common month is :", most_common_month)
# display the most common day of week
most_common_day_of_week = df['day_of_week'].value_counts().idxmax()
print("The most common day of week is :", most_common_day_of_week)
# display the most common start hour
most_common_start_hour = df['hour'].value_counts().idxmax()
print("The most common start hour is :", most_common_start_hour)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
most_common_start_station = df['Start Station'].value_counts().idxmax()
print("The most commonly used start station :", most_common_start_station)
# display most commonly used end station
most_common_end_station = df['End Station'].value_counts().idxmax()
print("The most commonly used end station :", most_common_end_station)
# display most frequent combination of start station and end station trip
most_common_start_end_station = df[['Start Station', 'End Station']].mode().loc[0]
print("The most commonly used start station and end station : {}, {}"\
.format(most_common_start_end_station[0], most_common_start_end_station[1]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
total_travel = df['Trip Duration'].sum()
print("Total travel time :", total_travel)
# display mean travel time
mean_travel = df['Trip Duration'].mean()
print("Mean travel time :", mean_travel)
# display mean travel time
max_travel = df['Trip Duration'].max()
print("Max travel time :", max_travel)
print("Travel time for each user type:\n")
# display the total trip duration for each user type
group_by_user_trip = df.groupby(['User Type']).sum()['Trip Duration']
for index, user_trip in enumerate(group_by_user_trip):
print(" {}: {}".format(group_by_user_trip.index[index], user_trip))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
print("Counts of user types:\n")
user_counts = df['User Type'].value_counts()
# iteratively print out the total numbers of user types
for index, user_count in enumerate(user_counts):
print(" {}: {}".format(user_counts.index[index], user_count))
print()
if 'Gender' in df.columns:
user_stats_gender(df)
if 'Birth Year' in df.columns:
user_stats_birth(df)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats_gender(df):
"""Displays statistics of analysis based on the gender of bikeshare users."""
# Display counts of gender
print("Counts of gender:\n")
gender_counts = df['Gender'].value_counts()
# iteratively print out the total numbers of genders
for index,gender_count in enumerate(gender_counts):
print(" {}: {}".format(gender_counts.index[index], gender_count))
print()
def user_stats_birth(df):
"""Displays statistics of analysis based on the birth years of bikeshare users."""
# Display earliest, most recent, and most common year of birth
birth_year = df['Birth Year']
# the most common birth year
most_common_year = birth_year.value_counts().idxmax()
print("The most common birth year:", most_common_year)
# the most recent birth year
most_recent = birth_year.max()
print("The most recent birth year:", most_recent)
# the most earliest birth year
earliest_year = birth_year.min()
print("The most earliest birth year:", earliest_year)
def table_stats(df, city):
"""Displays statistics on bikeshare users."""
print('\nCalculating Dataset Stats...\n')
# counts the number of missing values in the entire dataset
number_of_missing_values = np.count_nonzero(df.isnull())
print("The number of missing values in the {} dataset : {}".format(city, number_of_missing_values))
# counts the number of missing values in the User Type column
number_of_nonzero = np.count_nonzero(df['User Type'].isnull())
print("The number of missing values in the \'User Type\' column: {}".format(number_of_missing_values))
def display_data(df):
"""Displays raw bikeshare data."""
row_length = df.shape[0]
# iterate from 0 to the number of rows in steps of 5
for i in range(0, row_length, 5):
yes = input('\nWould you like to examine the particular user trip data? Type \'yes\' or \'no\'\n> ')
if yes.lower() != 'yes':
break
# retrieve and convert data to json format
# split each json row data
row_data = df.iloc[i: i + 5].to_json(orient='records', lines=True).split('\n')
for row in row_data:
# pretty print each user data
parsed_row = json.loads(row)
json_row = json.dumps(parsed_row, indent=2)
print(json_row)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
table_stats(df, city)
display_data(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()