-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmock.py
111 lines (88 loc) · 3.92 KB
/
mock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# The MIT License (MIT)
# Copyright © 2021 Yuma Rao
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the “Software”), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import torch
import asyncio
import bittensor as bt
from openvalidators.prompts import FirewallPrompt, FollowupPrompt, AnswerPrompt
from openvalidators.gating import BaseGatingModel
from typing import List
class MockGatingModel(BaseGatingModel):
def __init__(self, num_uids: int):
super(MockGatingModel, self).__init__()
# super(MockGatingModel, self).__init__()
self.num_uids = num_uids
self.linear = torch.nn.Linear(256, 10)
def forward(self, message: str) -> "torch.FloatTensor":
return torch.randn(self.num_uids)
def backward(self, scores: torch.FloatTensor, rewards: torch.FloatTensor):
return torch.tensor(0.0)
def resync(
self,
previous_metagraph: "bt.metagraph.Metagraph",
metagraph: "bt.metagraph.Metagraph",
):
pass
class MockRewardModel(torch.nn.Module):
def reward(
self,
completions_with_prompt: List[str],
completions_without_prompt: List[str],
difference=False,
shift=3,
) -> torch.FloatTensor:
return torch.zeros(len(completions_with_prompt))
class MockDendriteResponse:
completion = ""
elapsed_time = 0
is_success = True
firewall_prompt = FirewallPrompt()
followup_prompt = FollowupPrompt()
answer_prompt = AnswerPrompt()
def __init__(self, message: str):
if self.firewall_prompt.matches_template(message):
self.completion = self.firewall_prompt.mock_response()
elif self.followup_prompt.matches_template(message):
self.completion = self.followup_prompt.mock_response()
elif self.answer_prompt.matches_template(message):
self.completion = self.answer_prompt.mock_response()
else:
self.completion = "The capital of Texas is Austin."
def __str__(self):
return f"MockDendriteResponse({self.completion})"
def __repr__(self):
return f"MockDendriteResponse({self.completion})"
class MockDendritePool(torch.nn.Module):
def forward(self, roles: List[str], messages: List[str], uids: List[int], timeout: float):
return [MockDendriteResponse(messages[0]) for _ in uids]
async def async_forward(
self,
roles: List[str],
messages: List[str],
uids: List[int],
timeout: float = 12,
return_call=True,
):
async def query():
await asyncio.sleep(0.01)
return [MockDendriteResponse(messages[0]) for _ in uids]
return await query()
def resync(self, metagraph):
pass
async def async_backward(
self, uids: List[int], roles: List[str], messages: List[str], completions: List[str], rewards: List[float]
):
async def query():
await asyncio.sleep(0.01)
return [MockDendriteResponse(messages[0]) for _ in uids]
return await query()