-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathend2end_quick_match_display_formula_formula.json
553 lines (553 loc) · 24.3 KB
/
end2end_quick_match_display_formula_formula.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
[
{
"gt_idx": [
0
],
"gt": "\\left[ U ( x ), \\Pi^{U} ( y ) \\right]=\\delta( x-y ),",
"pred_idx": [
1,
2
],
"pred": "\\[H\\]\\[[U(x),\\Pi^U(y)]=\\delta(x-y),\\]",
"edit": 0.425531914893617,
"gt_position": [
2
],
"pred_position": 138,
"norm_gt": "$$\n\\left[u(x),\\pi^{u}(y)\\right]=\\delta(x-y),\n$$",
"norm_pred": "h[u(x),\\pi^u(y)]=\\delta(x-y),",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_inline",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "0",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 47,
"metric": {
"Edit_dist": 0.425531914893617
},
"Edit_num": 20,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
1
],
"gt": "( \\Sigma, \\Sigma_{i} )=\\left(-\\partial_{k} \\Pi_{k}^{V}, \\varepsilon^{i j k} \\partial_{j} \\left( \\Pi_{k}^{B}-m V_{k} \\right)-\\mu^{2} B_{i} \\right).",
"pred_idx": [
4
],
"pred": "\\[(\\Sigma,\\Sigma_i)=(-\\partial_k\\Pi_k^L,\\epsilon^{ijk}\\partial_j(\\Pi_k^B-mV_k)-\\mu^2B_i).\\tag{14}\\]",
"edit": 0.38405797101449274,
"gt_position": [
5
],
"pred_position": 318,
"norm_gt": "$$\n(\\sigma,\\sigma_{i})=\\left(-\\partial_{k}\\pi_{k}^{v},\\varepsilon^{ijk}\\partial_{j}\\left(\\pi_{k}^{b}-mv_{k}\\right)-\\mu^{2}b_{i}\\right).\n$$",
"norm_pred": "(\\sigma,\\sigma_i)=(-\\partial_k\\pi_k^l,\\epsilon^{ijk}\\partial_j(\\pi_k^b-mv_k)-\\mu^2b_i)",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "1",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 138,
"metric": {
"Edit_dist": 0.38405797101449274
},
"Edit_num": 53,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
2
],
"gt": "T_{k} \\equiv\\mu^{2} \\varPi_{k}^{B}=0",
"pred_idx": [
12
],
"pred": "\\[\\Pi_k\\equiv\\mu^2\\Pi_k^B=0\\]",
"edit": 0.45,
"gt_position": [
8
],
"pred_position": 763,
"norm_gt": "$$\nt_{k}\\equiv\\mu^{2}\\varpi_{k}^{b}=0\n$$",
"norm_pred": "\\pi_k\\equiv\\mu^2\\pi_k^b=0",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "2",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 40,
"metric": {
"Edit_dist": 0.45
},
"Edit_num": 18,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
3
],
"gt": "\\left[ T_{k} ( x ), \\, \\varSigma_{i} ( y ) \\right]=\\mu^{4} \\delta_{i k} \\delta( x-y ).",
"pred_idx": [
14,
15
],
"pred": "\\[\\Pi_k\\]\\[[T_k(x),\\Sigma(y)]=\\mu^4\\delta_{ik}\\delta(x-y).\\]",
"edit": 0.4025974025974026,
"gt_position": [
11
],
"pred_position": 821,
"norm_gt": "$$\n\\left[t_{k}(x),\\,\\varsigma_{i}(y)\\right]=\\mu^{4}\\delta_{ik}\\delta(x-y).\n$$",
"norm_pred": "\\pi_k[t_k(x),\\sigma(y)]=\\mu^4\\delta_{ik}\\delta(x-y)",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_inline",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "3",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 77,
"metric": {
"Edit_dist": 0.38961038961038963
},
"Edit_num": 30,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
4
],
"gt": "\\left( \\gamma^{U}, \\gamma_{k}^{A}, \\gamma^{V} \\right)=\\left( U, A_{k}, \\partial_{k} V_{k} \\right)=0.",
"pred_idx": [
26,
27
],
"pred": "\\[A_k\\]\\[(\\gamma^U,\\gamma_k^A,\\gamma^V)=(U,A_k,\\partial_kV_k)=0.\\]",
"edit": 0.44329896907216493,
"gt_position": [
14
],
"pred_position": 1423,
"norm_gt": "$$\n\\left(\\gamma^{u},\\gamma_{k}^{a},\\gamma^{v}\\right)=\\left(u,a_{k},\\partial_{k}v_{k}\\right)=0.\n$$",
"norm_pred": "a_k(\\gamma^u,\\gamma_k^a,\\gamma^v)=(u,a_k,\\partial_kv_k)=0",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_inline",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "4",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 97,
"metric": {
"Edit_dist": 0.44329896907216493
},
"Edit_num": 43,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
5
],
"gt": "V_{i}^{T} \\equiv\\big( \\delta_{i j}-\\partial_{i} \\partial_{j} / \\partial^{2} \\big) V_{j}.",
"pred_idx": [
30
],
"pred": "\\[V_i^T=(\\delta_{ij}-\\partial_i\\partial_j/\\partial^2)V_j.\\]",
"edit": 0.38372093023255816,
"gt_position": [
17
],
"pred_position": 1747,
"norm_gt": "$$\nv_{i}^{t}\\equiv\\big(\\delta_{ij}-\\partial_{i}\\partial_{j}/\\partial^{2}\\big)v_{j}.\n$$",
"norm_pred": "v_i^t=(\\delta_{ij}-\\partial_i\\partial_j/\\partial^2)v_j",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "5",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 86,
"metric": {
"Edit_dist": 0.38372093023255816
},
"Edit_num": 33,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
6
],
"gt": "\\mathbf{\\nabla} \\times\\mathbf{V}^{L} \\equiv0 \\equiv\\mathbf{\\nabla} \\cdot\\mathbf{V}^{T},",
"pred_idx": [
36
],
"pred": "\\[\\nabla\\timesV^L\\equiv0\\equiv\\nabla\\cdotV^T,\\]",
"edit": 0.3114754098360656,
"gt_position": [
20
],
"pred_position": 2081,
"norm_gt": "$$\n{\\nabla}\\times{v}^{l}\\equiv0\\equiv{\\nabla}\\cdot{v}^{t},\n$$",
"norm_pred": "\\nabla\\timesv^l\\equiv0\\equiv\\nabla\\cdotv^t,",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_inline",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "6",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 61,
"metric": {
"Edit_dist": 0.3114754098360656
},
"Edit_num": 19,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
7
],
"gt": "\\begin{array} {l} {{{2 L=\\left( \\dot{\\mathbf{B}}^{L} \\right)^{2}-\\left( \\nabla\\cdot\\mathbf{B}^{L} \\right)^{2}+\\left[ \\dot{\\mathbf{B}}^{T}-\\nabla\\times\\mathbf{A}^{T} \\right]^{2}+\\left( \\dot{\\mathbf{V}}^{T} \\right)^{2}-\\left( \\nabla\\times\\mathbf{V}^{T} \\right)^{2}+\\left[ \\dot{\\mathbf{V}}^{L}-\\nabla U \\right]^{2}}}} \\\\ {{{\\ \\ \\ +2 m \\left[ \\mathbf{V}^{T} \\cdot\\left( \\nabla\\times\\mathbf{A}^{T} \\right)+\\mathbf{B}^{L} \\cdot\\dot{\\mathbf{V}}^{L}+\\mathbf{B}^{T} \\cdot\\dot{\\mathbf{V}}^{T}-\\mathbf{B}^{L} \\cdot\\nabla U \\right]+2 \\mu^{2} \\left[ \\mathbf{A}^{T} \\cdot\\mathbf{B}^{T}+\\mathbf{A}^{L} \\cdot\\mathbf{B}^{L} \\right]}}} \\\\ \\end{array}.",
"pred_idx": [
38
],
"pred": "\\[2L=(\\dot{B}^L)^2-(\\nabla\\cdotB^L)^2+[\\dot{B}^T-\\nabla\\timesA^T]^2+(\\dot{V}^T)^2-(\\nabla\\timesV^T)^2+[\\dot{V}^L-\\nablaU]^2+2m[V^T\\cdot(\\nabla\\timesA^T)+B^L\\cdot\\dot{V}^L+B^T\\cdot\\dot{V}^T-B^L\\cdot\\nablaU]+2\\mu^2[A^T\\cdotB^T+A^L\\cdotB^L].\\]",
"edit": 0.4766146993318486,
"gt_position": [
23
],
"pred_position": 2122,
"norm_gt": "$$\n{l}{{{2l=\\left(\\dot{{b}}^{l}\\right)^{2}-\\left(\\nabla\\cdot{b}^{l}\\right)^{2}+\\left[\\dot{{b}}^{t}-\\nabla\\times{a}^{t}\\right]^{2}+\\left(\\dot{{v}}^{t}\\right)^{2}-\\left(\\nabla\\times{v}^{t}\\right)^{2}+\\left[\\dot{{v}}^{l}-\\nablau\\right]^{2}}}}\\\\{{{\\\\\\+2m\\left[{v}^{t}\\cdot\\left(\\nabla\\times{a}^{t}\\right)+{b}^{l}\\cdot\\dot{{v}}^{l}+{b}^{t}\\cdot\\dot{{v}}^{t}-{b}^{l}\\cdot\\nablau\\right]+2\\mu^{2}\\left[{a}^{t}\\cdot{b}^{t}+{a}^{l}\\cdot{b}^{l}\\right]}}}\\\\.\n$$",
"norm_pred": "2l=(\\dot{b}^l)^2-(\\nabla\\cdotb^l)^2+[\\dot{b}^t-\\nabla\\timesa^t]^2+(\\dot{v}^t)^2-(\\nabla\\timesv^t)^2+[\\dot{v}^l-\\nablau]^2+2m[v^t\\cdot(\\nabla\\timesa^t)+b^l\\cdot\\dot{v}^l+b^t\\cdot\\dot{v}^t-b^l\\cdot\\nablau]+2\\mu^2[a^t\\cdotb^t+a^l\\cdotb^l]",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_inline",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "7",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 449,
"metric": {
"Edit_dist": 0.4766146993318486
},
"Edit_num": 214,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
8
],
"gt": "{\\bf B}^{L}=0={\\dot{\\bf V}}^{L}-\\nabla U,",
"pred_idx": [
39,
40,
41
],
"pred": "\\[A^L\\]\\[U\\]\\[B^L=0=\\dot{V}^L-\\nablaU,\\]",
"edit": 0.4772727272727273,
"gt_position": [
26
],
"pred_position": 2147,
"norm_gt": "$$\n{\\bfb}^{l}=0={\\dot{\\bfv}}^{l}-\\nablau,\n$$",
"norm_pred": "a^lub^l=0=\\dot{v}^l-\\nablau,",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_inline",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "8",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 44,
"metric": {
"Edit_dist": 0.4772727272727273
},
"Edit_num": 21,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
9
],
"gt": "2 L=\\left( {\\dot{\\mathbf{V}}}^{T} \\right)^{2}-\\left( \\nabla\\times\\mathbf{V}^{T} \\right)^{2}+\\left[ {\\dot{\\mathbf{B}}}^{T}-\\nabla\\times\\mathbf{A}^{T} \\right]^{2}+2 m \\mathbf{V}^{T} \\cdot\\left( \\nabla\\times\\mathbf{A}^{T} \\right)+2 m \\mathbf{B}^{T} \\cdot{\\dot{\\mathbf{V}}}^{T}+2 \\mu^{2} \\mathbf{A}^{T} \\cdot\\mathbf{B}^{T}.",
"pred_idx": [
43
],
"pred": "\\[2L=(\\dot{V}^T)^2-(\\nabla\\timesV^T)^2+[\\dot{B}^T-\\nabla\\timesA^T]^2+2mV^T\\cdot(\\nabla\\timesA^T)+2mB^T\\cdot\\dot{V}^T+2\\mu^2A^T\\cdotB^T.\\]",
"edit": 0.4430379746835443,
"gt_position": [
29
],
"pred_position": 2271,
"norm_gt": "$$\n2l=\\left({\\dot{{v}}}^{t}\\right)^{2}-\\left(\\nabla\\times{v}^{t}\\right)^{2}+\\left[{\\dot{{b}}}^{t}-\\nabla\\times{a}^{t}\\right]^{2}+2m{v}^{t}\\cdot\\left(\\nabla\\times{a}^{t}\\right)+2m{b}^{t}\\cdot{\\dot{{v}}}^{t}+2\\mu^{2}{a}^{t}\\cdot{b}^{t}.\n$$",
"norm_pred": "2l=(\\dot{v}^t)^2-(\\nabla\\timesv^t)^2+[\\dot{b}^t-\\nabla\\timesa^t]^2+2mv^t\\cdot(\\nabla\\timesa^t)+2mb^t\\cdot\\dot{v}^t+2\\mu^2a^t\\cdotb^t",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "9",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 237,
"metric": {
"Edit_dist": 0.4430379746835443
},
"Edit_num": 105,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
10
],
"gt": "\\mathbf{A}^{T} \\cdot\\mathbf{B}^{T}=-\\big( \\nabla\\times\\mathbf{A}^{T} \\big) \\cdot\\big( \\nabla^{2} \\big)^{-1} \\big( \\nabla\\times\\mathbf{B}^{T} \\big),",
"pred_idx": [
44
],
"pred": "\\[A^T\\cdotB^T=-(\\nabla\\timesA^T)\\cdot(\\nabla^2)^{-1}(\\nabla\\timesB^T),\\]",
"edit": 0.4224137931034483,
"gt_position": [
32
],
"pred_position": 2565,
"norm_gt": "$$\n{a}^{t}\\cdot{b}^{t}=-\\big(\\nabla\\times{a}^{t}\\big)\\cdot\\big(\\nabla^{2}\\big)^{-1}\\big(\\nabla\\times{b}^{t}\\big),\n$$",
"norm_pred": "a^t\\cdotb^t=-(\\nabla\\timesa^t)\\cdot(\\nabla^2)^{-1}(\\nabla\\timesb^t),",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "10",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 116,
"metric": {
"Edit_dist": 0.4224137931034483
},
"Edit_num": 49,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
11
],
"gt": "\\nabla\\times{\\bf A}^{T}=\\dot{{\\bf B}}^{T}-m {\\bf V}^{T}+\\mu^{2} \\big( \\nabla^{2} \\big)^{-1} \\big( \\nabla\\times{\\bf B}^{T} \\big).",
"pred_idx": [
47
],
"pred": "\\[\\nabla\\timesA^T=\\dot{B}^T-mV^T+\\mu^2(\\nabla^2)^{-1}(\\nabla\\timesB^T).\\]",
"edit": 0.44715447154471544,
"gt_position": [
35
],
"pred_position": 2654,
"norm_gt": "$$\n\\nabla\\times{\\bfa}^{t}=\\dot{{\\bfb}}^{t}-m{\\bfv}^{t}+\\mu^{2}\\big(\\nabla^{2}\\big)^{-1}\\big(\\nabla\\times{\\bfb}^{t}\\big).\n$$",
"norm_pred": "\\nabla\\timesa^t=\\dot{b}^t-mv^t+\\mu^2(\\nabla^2)^{-1}(\\nabla\\timesb^t)",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "11",
"image_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg",
"upper_len": 123,
"metric": {
"Edit_dist": 0.44715447154471544
},
"Edit_num": 55,
"img_name": "docstructbench_llm-raw-scihub-o.O-j.physletb.2004.06.101.pdf_3.jpg"
},
{
"gt_idx": [
0
],
"gt": "B[u,v]=\\int_{U}\\sum_{i,j}a^{i j}u_{x_{i}}v_{x_{j}}\\,d x\\mathrm{~for~}u\\in H^{1}(U),v\\in H_{0}^{1}(U).",
"pred_idx": [
3
],
"pred": "\\[B[u,v]=\\int_U\\sum_{i,j}a^{ij}u_{x_i}v_{x_j}\\,dx\\text{for}u\\inH^1(U),v\\inH^1_0(U).\\]",
"edit": 0.25,
"gt_position": [
5
],
"pred_position": 523,
"norm_gt": "$$\nb[u,v]=\\int_{u}\\sum_{i,j}a^{ij}u_{x_{i}}v_{x_{j}}\\,dx{~for~}u\\inh^{1}(u),v\\inh_{0}^{1}(u).\n$$",
"norm_pred": "b[u,v]=\\int_u\\sum_{i,j}a^{ij}u_{x_i}v_{x_j}\\,dx{for}u\\inh^1(u),v\\inh^1_0(u)",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "12",
"image_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg",
"upper_len": 96,
"metric": {
"Edit_dist": 0.25
},
"Edit_num": 24,
"img_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg"
},
{
"gt_idx": [
2
],
"gt": "\\begin{aligned} {{-a^{i j} w_{x_{i} x_{j}}}} & {{} {{}=\\frac{-a^{i j} u_{x_{i} x_{j}} v+a^{i j} v_{x_{i} x_{j}} u} {v^{2}}+\\frac{a^{i j} v_{x_{i}} u_{x_{j}}-a^{i j} u_{x_{i}} v_{x_{j}}} {v^{2}}-a^{i j} \\frac{2} {v} v_{x_{j}} \\frac{v_{x_{i}} u-v u_{x_{i}}} {v^{2}}}} \n\\\\ {{}} & {{} {} {{}=\\frac{( L u-b^{i} u_{x_{i}}-c u ) v+(-L v+b^{i} v_{x_{i}}+c v ) u} {v^{2}}+0+a^{i j} \\frac{2} {v} v_{x_{j}} w_{x_{i}}, \\ \\mathrm{s i n c e} \\ a^{i j}-a^{j i}.}} \n\\\\ {{}} & {{} {} {{}=\\frac{L u} {v}-\\frac{u L v} {v^{2}}-b^{i} w_{x_{i}}+a^{i j} \\frac{2} {v} w_{x_{j}} w_{x_{i}}}} \\\\ \\end{aligned}",
"pred_idx": [
20,
21,
22
],
"pred": "\\[-a^{ij}w_{x_ix_j}=-a^{ij}u_{x_ix_j}v+a^{ij}v_{x_ix_j}u+\\frac{a^{ij}v_{x_i}u_{x_j}-a^{ij}u_{x_i}v_{x_j}}{v^2}-a^{ij}\\frac{2}{v}v_{x_i}u_{x_j}-\\frac{vu_{x_i}}{v^2}\\]\\[=(Lu-b^iu_{x_i}-cw)v+(-Lu+b^iv_{x_i}+cv)u\\]\\[=\\frac{Lu}{v}-\\frac{uLv}{v^2}-b^iu_{x_i}+a^{ij}\\frac{2}{v}v_{x_j}w_{x_i},\\text{since}a^{ij}=a^{ji}.\\]",
"edit": 0.474468085106383,
"gt_position": [
10
],
"pred_position": 1634,
"norm_gt": "$$\n{{-a^{ij}w_{x_{i}x_{j}}}}&{{}{{}=\\frac{-a^{ij}u_{x_{i}x_{j}}v+a^{ij}v_{x_{i}x_{j}}u}{v^{2}}+\\frac{a^{ij}v_{x_{i}}u_{x_{j}}-a^{ij}u_{x_{i}}v_{x_{j}}}{v^{2}}-a^{ij}\\frac{2}{v}v_{x_{j}}\\frac{v_{x_{i}}u-vu_{x_{i}}}{v^{2}}}}\n\\\\{{}}&{{}{}{{}=\\frac{(lu-b^{i}u_{x_{i}}-cu)v+(-lv+b^{i}v_{x_{i}}+cv)u}{v^{2}}+0+a^{ij}\\frac{2}{v}v_{x_{j}}w_{x_{i}},\\{since}\\a^{ij}-a^{ji}.}}\n\\\\{{}}&{{}{}{{}=\\frac{lu}{v}-\\frac{ulv}{v^{2}}-b^{i}w_{x_{i}}+a^{ij}\\frac{2}{v}w_{x_{j}}w_{x_{i}}}}\\\\\n$$",
"norm_pred": "-a^{ij}w_{x_ix_j}=-a^{ij}u_{x_ix_j}v+a^{ij}v_{x_ix_j}u+\\frac{a^{ij}v_{x_i}u_{x_j}-a^{ij}u_{x_i}v_{x_j}}{v^2}-a^{ij}\\frac{2}{v}v_{x_i}u_{x_j}-\\frac{vu_{x_i}}{v^2}=(lu-b^iu_{x_i}-cw)v+(-lu+b^iv_{x_i}+cv)u=\\frac{lu}{v}-\\frac{ulv}{v^2}-b^iu_{x_i}+a^{ij}\\frac{2}{v}v_{x_j}w_{x_i},{since}a^{ij}=a^{ji}",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "13",
"image_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg",
"upper_len": 470,
"metric": {
"Edit_dist": 0.474468085106383
},
"Edit_num": 223,
"img_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg"
},
{
"gt_idx": [
3
],
"gt": "M w:=-a^{i j}w_{x_{i}x_{j}}+w_{x_{i}}\\big[b^{i}-a^{i j}\\frac{2}{v}v_{x_{j}}\\big]=\\frac{L u}{v}-\\frac{u L v}{v^{2}}\\leq0\\;\\;\\mathrm{on}\\;\\{x\\in\\bar{U}:u>0\\}\\subseteq U",
"pred_idx": [
23
],
"pred": "\\[Mw:=-a^{ij}w_{x_ix_j}+w_{x_i}\\left[b^i-a^{ij}\\frac{2}{v}v_{x_j}\\right]=\\frac{Lu}{v}-\\frac{uLv}{v^2}\\leq0\\text{on}\\{x\\in\\bar{U}:u>0\\}\\subseteqU\\]",
"edit": 0.1962025316455696,
"gt_position": [
12
],
"pred_position": 2042,
"norm_gt": "$$\nmw:=-a^{ij}w_{x_{i}x_{j}}+w_{x_{i}}\\big[b^{i}-a^{ij}\\frac{2}{v}v_{x_{j}}\\big]=\\frac{lu}{v}-\\frac{ulv}{v^{2}}\\leq0\\;\\;{on}\\;\\{x\\in\\bar{u}:u>0\\}\\subsetequ\n$$",
"norm_pred": "mw:=-a^{ij}w_{x_ix_j}+w_{x_i}\\left[b^i-a^{ij}\\frac{2}{v}v_{x_j}\\right]=\\frac{lu}{v}-\\frac{ulv}{v^2}\\leq0{on}\\{x\\in\\bar{u}:u>0\\}\\subsetequ",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "14",
"image_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg",
"upper_len": 158,
"metric": {
"Edit_dist": 0.1962025316455696
},
"Edit_num": 31,
"img_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg"
},
{
"gt_idx": [
4
],
"gt": "0<\\frac{max}{u>0}\\omega=\\operatorname*{max}_{\\partial\\{u>0\\}}w=\\frac{0}{v}=0",
"pred_idx": [
27
],
"pred": "\\[0<\\max_{\\{u>0\\}}w=\\max_{\\partial\\{u>0\\}}w=\\frac{0}{v}=0\\]",
"edit": 0.3333333333333333,
"gt_position": [
14
],
"pred_position": 2420,
"norm_gt": "$$\n0<\\frac{max}{u>0}\\omega=*{max}_{\\partial\\{u>0\\}}w=\\frac{0}{v}=0\n$$",
"norm_pred": "0<\\max_{\\{u>0\\}}w=\\max_{\\partial\\{u>0\\}}w=\\frac{0}{v}=0",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "15",
"image_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg",
"upper_len": 69,
"metric": {
"Edit_dist": 0.3333333333333333
},
"Edit_num": 23,
"img_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg"
},
{
"gt_idx": [
1
],
"gt": "\\begin{align}\nB\\left [ \\phi \\left ( u \\right ),v \\right ] & = \\int_{U}^{} \\sum_{i,j}^{} a^{ij} \\left ( \\phi \\left ( u \\right ) \\right ) _{x_{i} }v_{x_{j} }dx \n\\\\ & = \\int_{U}^{}\\sum_{i,j}^{} a^{ij}\\phi{}' \\left ( u \\right )u_{x_{i} }v_{x_{j} } dx,\\left ( \\phi{}'\\left ( u \\right ) is~bounded~since~u~is~bounded \\right )\n\\\\ & = \\int_{U}^{}\\sum_{i,j}^{} a^{ij}u_{x_{i} } \\left (\\phi {}' \\left ( u \\right ) v \\right ) _{x_{j} }-\\sum_{i,j}^{}a_{ij}\\phi{}'' \\left ( u \\right ) u_{x_{i} }u_{x_{j}}v~dx\n\\\\\\le 0-\\int_{U}^{}\\phi {\\left ( u \\right ) }'' v\\left | Du \\right |^{2}dx\\le 0,~by~convexity~of~\\phi\\end{align}",
"pred_idx": [
8
],
"pred": "\\[=\\int_U\\sum_{i,j}a^{ij}u_{x_i}(\\phi'(u)v)_{x_j}-\\sum_{i,j}a_{ij}\\phi''(u)u_{x_i}u_{x_j}v\\,dx\\]",
"edit": 1,
"gt_position": [
7
],
"pred_position": 940,
"norm_gt": "$$\n\nb\\left[\\phi\\left(u\\right),v\\right]&=\\int_{u}^{}\\sum_{i,j}^{}a^{ij}\\left(\\phi\\left(u\\right)\\right)_{x_{i}}v_{x_{j}}dx\n\\\\&=\\int_{u}^{}\\sum_{i,j}^{}a^{ij}\\phi{}'\\left(u\\right)u_{x_{i}}v_{x_{j}}dx,\\left(\\phi{}'\\left(u\\right)is~bounded~since~u~is~bounded\\right)\n\\\\&=\\int_{u}^{}\\sum_{i,j}^{}a^{ij}u_{x_{i}}\\left(\\phi{}'\\left(u\\right)v\\right)_{x_{j}}-\\sum_{i,j}^{}a_{ij}\\phi{}''\\left(u\\right)u_{x_{i}}u_{x_{j}}v~dx\n\\\\\\le0-\\int_{u}^{}\\phi{\\left(u\\right)}''v\\left|du\\right|^{2}dx\\le0,~by~convexity~of~\\phi\n$$",
"norm_pred": "=\\int_u\\sum_{i,j}a^{ij}u_{x_i}(\\phi'(u)v)_{x_j}-\\sum_{i,j}a_{ij}\\phi''(u)u_{x_i}u_{x_j}v\\,dx",
"gt_category_type": "equation_isolated",
"pred_category_type": "equation_isolated",
"gt_attribute": [
{
"formula_type": "print"
}
],
"img_id": "16",
"image_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg",
"upper_len": 503,
"metric": {
"Edit_dist": 0.8190854870775348
},
"Edit_num": 412,
"img_name": "jiaocaineedrop_Evans_PDE_Solution_Chapter_6_Second-Order_Elliptic_Equations.pdf_5.jpg"
}
]