-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
327 lines (260 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import fcnr.models as models
import fcnr.optimizers as optimizers
import fcnr.schedulers as schedulers
from fcnr import *
import torch
from torch.utils.data import DataLoader
from pytorch_msssim import ms_ssim as calc_ms_ssim
import numpy as np
import wandb
from tqdm import tqdm
import argparse
import inspect
from pathlib import Path
import os
import time
import lpips
save_name = 'tangaroa-vol1'
if not os.path.exists(save_name):
os.mkdir(save_name)
def experiment(CFG):
"""
Training initialization and loop.
"""
# Init dataloaders
train_set = Dataset(name=CFG.train.name+"#train", path=os.path.join(CFG.train.root, CFG.train.name))
train_loader = DataLoader(train_set, batch_size=CFG.batch_size, shuffle=True,
num_workers=4, pin_memory=True)
train_logger = Logger(CFG.train.name + '#train')
eval_set = Dataset(name=CFG.eval.name+"#eval", path=os.path.join(CFG.eval.root, CFG.eval.name))
eval_loader = DataLoader(eval_set, batch_size=1, shuffle=False,
num_workers=4, pin_memory=False)
eval_logger = Logger(CFG.eval.name + '#eval')
test_set = Dataset(name=CFG.test.name+"#test", path=os.path.join(CFG.test.root, CFG.test.name))
test_loader = DataLoader(test_set, batch_size=1, shuffle=False,
num_workers=4, pin_memory=False)
test_logger = Logger(CFG.test.name + '#test')
# initialize model
model = getattr(models, CFG.model.name)(**CFG.model.kwargs)
model = model.to(CFG.device)
model.load_state_dict(torch.load("/afs/crc.nd.edu/user/y/ylu25/Private/fcnr-fcnr/tangaroa-vol/model_2.pth"))
# wandb.watch(model, log_freq=100, log='all')
# init optimizer and scheduler
optimizer = getattr(optimizers, CFG.optimizer.name)(model.parameters(), lr=CFG.lr, **CFG.optimizer.kwargs)
scheduler = getattr(schedulers, CFG.scheduler.name)(optimizer, **CFG.scheduler.kwargs)
# train model
step = train(train_loader, eval_loader, model, train_logger, eval_logger, optimizer, scheduler, CFG)
# test model after training
print(f'\n## TESTING ON {test_logger.prefix} ##')
'''with torch.no_grad():
evaluation(test_loader, model, test_logger, CFG, 1)
test_results = test_logger.scal.copy()
test_logger.log(step)'''
return test_results
def train(train_loader, eval_loader, model, train_logger, eval_logger, optimizer, scheduler, CFG):
"""
Training loop function.
"""
if CFG.resume:
print(f'Resume from {CFG.resume}')
start_epoch = load_model(CFG.resume, model, optimizer, scheduler)
else:
start_epoch = 0
# TRAINING LOOP
step = start_epoch * len(train_loader.dataset)
training_time = 0
for epoch in range(start_epoch, CFG.epochs):
print(f'\ntrain epoch {epoch}/{CFG.epochs}')
for (batch, idx) in tqdm(train_loader, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}'):
left, right = batch['left'], batch['right']
pl, pr = batch['pl'], batch['pr']
pos = None
B = left.size(0)
start_time = time.time()
_train_step(left, right, pl, pr, pos, model, optimizer, train_logger, step, CFG)
training_time += time.time() - start_time
#if step % CFG.eval_steps < B:
# with torch.no_grad():
# evaluation(eval_loader, model, eval_logger, CFG, epoch)
# eval_logger.log(step)
# save_model(CFG.exp_path, model, optimizer, scheduler, epoch)
if step % CFG.lr_drop < B and step > 0:
save_model(CFG.exp_path, model, optimizer, scheduler, epoch, suffix=f'_{get_lr(optimizer)}')
scheduler.step()
step += B
with torch.no_grad():
if epoch == CFG.epochs-1:
evaluation(eval_loader, model, eval_logger, CFG, epoch)
eval_logger.log(step)
train_logger.log(step)
torch.save(model.state_dict(), f"./{save_name}/model_{epoch}.pth")
with open(Path(CFG.exp_path) / 'log.txt', 'a') as f:
f.write(f"\n######average training time for epoch {epoch+1}: {training_time/(epoch+1)}######\n")
return step
def _train_step(left, right, pl, pr, pos, model, optimizer, train_logger, step, CFG):
"""
A single training step
"""
model.train()
left = left.to(CFG.device)
right = right.to(CFG.device)
pl = pl.to(CFG.device)
pr = pr.to(CFG.device)
pos = pos if pos is None else pos.to(CFG.device)
optimizer.zero_grad()
output = model(left, right, pl, pr, pos)
pred, rate, latents = output.pred, output.rate, output.latents
pred_left, pred_right = pred.left, pred.right
# Compute MSE
mse_left = calc_mse(left, pred_left)
mse_right = calc_mse(right, pred_right)
mse = (mse_left + mse_right)/2
# Compute PSNR
psnr_left = calc_psnr(mse_left, eps=CFG.eps)
psnr_right = calc_psnr(mse_right, eps=CFG.eps)
psnr = (psnr_left + psnr_right)/2
# Computer BPP
bpp_y_left = calc_bpp(rate.left.y, left)
bpp_z_left = calc_bpp(rate.left.z, left)
bpp_y_right = calc_bpp(rate.right.y, right)
bpp_z_right = calc_bpp(rate.right.z, right)
bpp = (bpp_y_left + bpp_z_left + bpp_y_right + bpp_z_right)/2
bpp_y = bpp_y_left + bpp_y_right
bpp_z = bpp_z_left + bpp_z_right
# Computer RD-Loss
loss = (bpp + CFG.lmda * mse) / (1 + CFG.lmda)
# Backward - optimize
loss.mean().backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 2.50)
optimizer.step()
# Log scalars
train_logger.scalars(
loss=loss, bpp=bpp, bpp_y=bpp_y, bpp_z=bpp_z, mse=mse, psnr=psnr, lr=get_lr(optimizer)
)
# train_logger.log(step)
def evaluation(eval_loader, model, eval_logger, CFG, epoch):
"""
Evalution loop function.
"""
dataset = eval_loader.dataset
file_dict = dataset.file_dict
for (batch, idx) in tqdm(eval_loader, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}'):
left, right = batch['left'], batch['right']
pl, pr = batch['pr'], batch['pr']
pos = None
left_name = Path(file_dict['left_image'][idx]).stem
right_name = Path(file_dict['right_image'][idx]).stem
_evaluation_step(left, right, pl, pr, pos, model, eval_logger, CFG, left_name, right_name, epoch)
log = [f' ## eval {eval_logger.prefix} averages:']
for name, vals in eval_logger.scal.items():
log.append(f' {name:10}: {np.mean(vals):.4}')
log.append(f'tags = {CFG.tags}, epoch={epoch}')
log_str = '\n' + '\n'.join(log)
with open(Path(CFG.exp_path) / 'log.txt', 'a') as f:
f.write(log_str)
print(log_str)
lpips_fn = lpips.LPIPS(net='alex',version='0.1')
lpips_fn.cuda()
def _evaluation_step(left, right, pl, pr, pos, model, eval_logger, CFG, left_name, right_name, epoch):
"""
A single evaluation step
"""
model.eval()
left = left.to(CFG.device)
right = right.to(CFG.device)
pl = pl.to(CFG.device)
pr = pr.to(CFG.device)
pos = pos if pos is None else pos.to(CFG.device)
start_time = time.time()
output = model(left, right, pl, pr, pos)
pred, rate, latents = output.pred, output.rate, output.latents
pred_left = torch.clamp(pred.left, min=0.0, max=1.0)
pred_right = torch.clamp(pred.right, min=0.0, max=1.0)
eval_time = (time.time() - start_time) / 2.
# Compute LPIPS
lpips_left = lpips_fn.forward(pred_left*2.-1., left*2.-1.)
lpips_right = lpips_fn.forward(pred_right*2.-1., right*2.-1.)
lpips_val = (lpips_left + lpips_right) / 2.
# Compute MSE
mse_left = calc_mse(left, pred_left)
mse_right = calc_mse(right, pred_right)
mse = (mse_left + mse_right)/2
# Compute PSNR
psnr_left = calc_psnr(mse_left, eps=CFG.eps)
psnr_right = calc_psnr(mse_right, eps=CFG.eps)
psnr = (psnr_left + psnr_right)/2
ms_ssim_left = calc_ms_ssim(left, pred_left)
ms_ssim_right = calc_ms_ssim(right, pred_right)
ms_ssim = (ms_ssim_left + ms_ssim_right)/2
# Computer BPP
bpp_y_left = calc_bpp(rate.left.y, left)
bpp_z_left = calc_bpp(rate.left.z, left)
bpp_y_right = calc_bpp(rate.right.y, right)
bpp_z_right = calc_bpp(rate.right.z, right)
bpp = (bpp_y_left + bpp_z_left + bpp_y_right + bpp_z_right)/2
bpp_y = bpp_y_left + bpp_y_right
bpp_z = bpp_z_left + bpp_z_right
# Computer RD-Loss
loss = (bpp + CFG.lmda * mse) / (1 + CFG.lmda)
tl = left_name.split("_")[1]
tr = right_name.split("_")[1]
if not os.path.exists(f'./{save_name}/'+tl+"/"):
os.makedirs(f'./{save_name}/'+tl+"/")
if not os.path.exists(f'./{save_name}/'+tr+"/"):
os.makedirs(f'./{save_name}/'+tr+"/")
if False:
images_gt = torch.cat([left, right], dim=-1)
images_pred = torch.cat([pred.left, pred.right], dim=-1)
image = torch.cat([images_gt, images_pred], dim=-2)
caption = f'psnr={psnr.item()}, mse={mse.item()}, bpp={bpp.item()}, mse_left={mse_left.item()}, mse_right={mse_right.item()}'
unloader = transforms.ToPILImage()
unloader(pred_left.cpu().squeeze(0)).save(f'./{save_name}/'+tl+'/'+left_name+".png")
unloader(pred_right.cpu().squeeze(0)).save(f'./{save_name}/'+tr+'/'+right_name+".png")
eval_logger.image(image, caption)
# Log scalars
eval_logger.scalars(
ms_ssim=ms_ssim, loss=loss, bpp=bpp, bpp_y=bpp_y, bpp_z=bpp_z, mse=mse, mse_left=mse_left, mse_right=mse_right, psnr=psnr, lpips=lpips_val, eval_time=eval_time
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="""Order of arguments: gpu_idx (required) exp_name (optional).
The ordering is args > config > resume, meaning for any parameter
the cli arguments is used if available, otherwise the specified
config file, then the config from the resumed run.
If neither is available the default is used.""")
parser.add_argument('argv', nargs='*', help='gpu_idx (required) exp_name (optional)')
parser.add_argument('--testing', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--resume', action='store_true',
help='Resume training in same wandb run and experiment folder.')
parser.add_argument('--resume_new', action='store_true',
help='Resume training in different wandb run and experiment folder.')
parser.add_argument('--log_dir', type=str, default='./logs')
parser.add_argument('--config', type=str)
parser.add_argument('--project', type=str)
parser.add_argument('--entity', type=str)
parser.add_argument('--seed', type=int)
parser.add_argument('--tags', type=str,
help='A string with tags seperated by commas. E.g.: "tag1, tag2, tag3"')
parser.add_argument('--lmda', type=float)
parser.add_argument('--lr', type=float)
parser.add_argument('--batch_size', type=int)
parser.add_argument('--lr_drop', type=int,
help='number of steps after which the learning rate is dropped.')
parser.add_argument('--epochs', type=int)
parser.add_argument('--model', type=str,
help=f'Options: {", ".join([l[0] for l in inspect.getmembers(models, inspect.isclass) if l[1].__module__ == "sa.models"])}')
parser.add_argument('--train', type=str,
help=f'name of training dataset. Options: {", ".join(list_datasets())}')
parser.add_argument('--eval', type=str,
help=f'name of training dataset. Options: {", ".join(list_datasets())}')
parser.add_argument('--test', type=str,
help=f'name of training dataset. Options: {", ".join(list_datasets())}')
args = parser.parse_args()
config = process_cli_arguments(args)
# Initialize wandb
wandb.login()
wandb.init(group=config.exp_name, project=config.project, #entity=config.entity,
tags=config.tags, config=config, id=config.run_id, resume="allow")
wandb.run.log_code('.')
wandb.run.name = config.run_id
experiment(config)