-
Notifications
You must be signed in to change notification settings - Fork 459
/
Copy pathutils.py
357 lines (293 loc) · 15.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import re
import os
import torch
import requests
from tqdm import tqdm
from unidecode import unidecode
from transformers import AutoModel, AutoConfig, BertModel, PreTrainedModel
# Constants for patch length and number of features in a patch
PATCH_LENGTH = 64
PATCH_FEATURES = 98
class MusicPatchilizer:
"""
Class for converting music data to patches and vice-versa.
Attributes:
delimiters (tuple): A tuple of strings containing the delimiters used for splitting bars.
regexPattern (str): A regular expression pattern for splitting bars.
pad_id (int): The id of the padding token.
mask_id (int): The id of the mask token.
eos_id (int): The id of the end-of-sequence token.
Methods:
split_bars(body): Splits a body of music into individual bars using the delimiters specified in `self.delimiters`.
bar2patch(bar, patch_length): Encodes a single bar as a patch of specified length.
patch2bar(patch): Converts a patch to a bar string.
encode(music, music_length, patch_length=PATCH_LENGTH, add_eos_patch=False): Encodes the input music string as a list of patches.
decode(patches): Decodes a sequence of patches into a music score.
"""
def __init__(self):
# Delimiters used for splitting bars
self.delimiters = "|:", "::", ":|", "[|", "||", "|]", "|"
# Regular expression pattern for splitting bars
self.regexPattern = '('+'|'.join(map(re.escape, self.delimiters))+')'
# Padding, mask, and end-of-sequence token ids
self.pad_id = 0
self.mask_id = 96
self.eos_id = 97
def split_bars(self, body):
"""
Splits a body of music into individual bars using the delimiters specified in `self.delimiters`.
Args:
body (str): A string containing the body of music to be split into bars.
Returns:
list: A list of strings containing the individual bars.
"""
body = "".join(body)
bars = re.split(self.regexPattern, body)
while("" in bars):
bars.remove("")
if bars[0] in self.delimiters:
bars[1] = bars[0]+bars[1]
bars = bars[1:]
bars = [bars[i*2]+bars[i*2+1] for i in range(int(len(bars)/2))]
return bars
def bar2patch(self, bar, patch_length):
"""
Encodes a single bar as a patch of specified length.
Args:
bar (str): A string containing the bar to be encoded.
patch_length (int): An integer indicating the length of the patch to be returned.
Returns:
list: A list of integer-encoded musical tokens.
"""
patch = [self.pad_id] * patch_length
for i in range(min(patch_length, len(bar))):
chr = bar[i]
idx = ord(chr)
if idx>=32 and idx<127:
patch[i] = idx-31
if i+1<patch_length:
patch[i+1] = self.eos_id
return patch
def patch2bar(self, patch):
"""
Converts a patch to a bar string.
Args:
patch (list): A list of integer-encoded musical tokens.
Returns:
str: A string containing the decoded bar.
"""
bar = ""
for idx in patch:
if idx>0 and idx<96:
bar += chr(idx+31)
else:
break
return bar
def encode(self, music, music_length, patch_length=PATCH_LENGTH, add_eos_patch=False):
"""
Encodes the input music string as a list of patches.
Args:
music (str): A string containing the music to be encoded.
music_length (int): An integer indicating the maximum number of patches to be returned.
patch_length (int): An integer indicating the length of each patch.
add_eos_patch (bool): A boolean indicating whether to add an extra patch consisting of all EOS tokens at the end of the encoded music.
Returns:
list: A list of integer-encoded patches.
"""
# Convert to ASCII and split into lines
music = unidecode(music)
lines = music.split('\n')
try:
lines.remove('')
except:
pass
body = ""
patches = []
# Iterate over lines, splitting bars and encoding each one as a patch
for line in lines:
# check if the line is a music score line or not
if len(line)>1 and ((line[0].isalpha() and line[1] == ':') or line.startswith('%%score')):
# if the current line is a music score line, encode the previous body as patches
if body!="":
bars = self.split_bars(body)
for bar in bars:
# encode each bar in the body as a patch and append to the patches list
patch = self.bar2patch(bar, patch_length)
patches.append(patch)
# reset the body variable
body = ""
# encode the current line as a patch and append to the patches list
patch = self.bar2patch(line, patch_length)
patches.append(patch)
else:
# if the line is not a music score line, append to the body variable
body += line
if body!="":
bars = self.split_bars(body)
for bar in bars:
# encode each bar in the body as a patch and append to the patches list
patch = self.bar2patch(bar, patch_length)
patches.append(patch)
# add an extra patch consisting of all EOS tokens, if required
if add_eos_patch:
eos_patch = [self.eos_id] * patch_length
patches = patches + [eos_patch]
return patches[:music_length]
def decode(self, patches):
"""
Decodes a sequence of patches into a music score.
Args:
patches (list): A list of integer-encoded patches.
Returns:
str: A string containing the decoded music score.
"""
music = ""
for patch in patches:
music += self.patch2bar(patch)+'\n'
return music
class MusicEncoder(PreTrainedModel):
"""
MusicEncoder model for encoding music patches into a sequence of hidden states.
Args:
config (:obj:`BertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
Attributes:
patch_embedding (:obj:`torch.nn.Linear`): A linear layer to convert the one-hot encoded patches to the hidden size of the model.
enc (:obj:`BertModel`): The BERT model used to encode the patches.
"""
def __init__(self, config):
super(MusicEncoder, self).__init__(config)
self.patch_embedding = torch.nn.Linear(PATCH_LENGTH*PATCH_FEATURES, config.hidden_size)
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.enc = BertModel(config=config)
def forward(self, input_musics, music_masks):
"""
Args:
input_musics (:obj:`torch.LongTensor` of shape :obj:`(batch_size, music_length, patch_length)`):
Tensor containing the integer-encoded music patches.
music_masks (:obj:`torch.LongTensor` of shape :obj:`(batch_size, music_length)`):
Tensor containing the attention masks for the music patches.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, music_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
# One-hot encode the input music patches
input_musics = torch.nn.functional.one_hot(input_musics, num_classes=PATCH_FEATURES)
# Reshape the input music patches to feed into the linear layer
input_musics = input_musics.reshape(len(input_musics), -1, PATCH_LENGTH*PATCH_FEATURES).type(torch.FloatTensor)
# Apply the linear layer to convert the one-hot encoded patches to hidden features
input_musics = self.patch_embedding(input_musics.to(self.device))
# Apply the BERT model to encode the music data
output = self.enc(inputs_embeds=input_musics, attention_mask=music_masks.to(self.device))
return output
class CLaMP(PreTrainedModel):
"""
CLaMP model for joint text and music encoding.
Args:
config (:obj:`BertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
text_model_name (:obj:`str`, `optional`, defaults to :obj:`"distilroberta-base"`):
The name of the pre-trained text model to be used for text encoding.
Attributes:
text_enc (:obj:`AutoModel`): The pre-trained text model used for text encoding.
text_proj (:obj:`torch.nn.Linear`): A linear layer to project the text encoding to the hidden size of the model.
music_enc (:obj:`MusicEncoder`): The music encoder model used for music encoding.
music_proj (:obj:`torch.nn.Linear`): A linear layer to project the music encoding to the hidden size of the model.
"""
def __init__(self, config, text_model_name="distilroberta-base"):
super(CLaMP, self).__init__(config)
self.text_enc = AutoModel.from_pretrained(text_model_name)
self.text_proj = torch.nn.Linear(config.hidden_size, config.hidden_size)
torch.nn.init.normal_(self.text_proj.weight, std=0.02)
self.music_enc = MusicEncoder(config=config)
self.music_proj = torch.nn.Linear(config.hidden_size, config.hidden_size)
torch.nn.init.normal_(self.music_proj.weight, std=0.02)
def forward(self, input_texts, text_masks, input_musics, music_masks):
"""
Args:
input_texts (:obj:`torch.LongTensor` of shape :obj:`(batch_size, text_length)`):
Tensor containing the integer-encoded text.
text_masks (:obj:`torch.LongTensor` of shape :obj:`(batch_size, text_length)`):
Tensor containing the attention masks for the text.
input_musics (:obj:`torch.LongTensor` of shape :obj:`(batch_size, music_length, patch_length)`):
Tensor containing the integer-encoded music patches.
music_masks (:obj:`torch.LongTensor` of shape :obj:`(batch_size, music_length)`):
Tensor containing the attention masks for the music patches.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
music_features (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
The music features extracted from the music encoder.
text_features (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
The text features extracted from the text encoder.
"""
# Encode input texts
text_features = self.text_enc(input_texts.to(self.device), attention_mask=text_masks.to(self.device))['last_hidden_state']
text_features = self.avg_pooling(text_features, text_masks)
text_features = self.text_proj(text_features)
# Encode input musics
music_features = self.music_enc(input_musics, music_masks)['last_hidden_state']
music_features = self.avg_pooling(music_features, music_masks)
music_features = self.music_proj(music_features)
return music_features, text_features
def avg_pooling(self, input_features, input_masks):
"""
Applies average pooling to the input features.
Args:
input_features (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_length, hidden_size)`):
Tensor containing the input features.
input_masks (:obj:`torch.LongTensor` of shape :obj:`(batch_size, seq_length)`):
Tensor containing the attention masks for the input features.
Returns:
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`:
The pooled features.
"""
input_masks = input_masks.unsqueeze(-1).to(self.device)
input_features = input_features * input_masks
avg_pool = input_features.sum(dim=1) / input_masks.sum(dim=1)
return avg_pool
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
"""
Instantiate a CLaMP model from a pre-trained model configuration.
Args:
pretrained_model_name_or_path (:obj:`str`):
This can be either:
"clamp-small-512" for the small CLaMP model with 512 max sequence length.
"clamp-small-1024" for the small CLaMP model with 1024 max sequence length.
Returns:
:class:`~transformers.CLaMP`: The CLaMP model.
"""
model_dir = pretrained_model_name_or_path
# If the pre-trained model is not found locally, download it from Hugging Face
if not os.path.exists(model_dir):
# Create the model directory and download the config and pytorch model files
os.makedirs(model_dir)
config_url = f"https://huggingface.co/{pretrained_model_name_or_path}/raw/main/config.json"
model_url = f"https://huggingface.co/{pretrained_model_name_or_path}/resolve/main/pytorch_model.bin"
chunk_size = 1024 * 1024 # 1MB
# download config file
with requests.get(config_url, stream=True) as r:
r.raise_for_status()
total_size = int(r.headers.get('content-length', 0))
with open(model_dir+"/config.json", 'wb') as f:
with tqdm(total=total_size, unit='B', unit_scale=True, desc='Downloading config') as pbar:
for chunk in r.iter_content(chunk_size=chunk_size):
f.write(chunk)
pbar.update(len(chunk))
# download pytorch model file
with requests.get(model_url, stream=True) as r:
r.raise_for_status()
total_size = int(r.headers.get('content-length', 0))
with open(model_dir+"/pytorch_model.bin", 'wb') as f:
with tqdm(total=total_size, unit='B', unit_scale=True, desc='Downloading model') as pbar:
for chunk in r.iter_content(chunk_size=chunk_size):
f.write(chunk)
pbar.update(len(chunk))
# Load the model weights and configuration
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
model = cls(config)
model.load_state_dict(torch.load(pretrained_model_name_or_path+str('/pytorch_model.bin')))
return model