-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.py
48 lines (38 loc) · 1.49 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.regularizers import l2
from keras.optimizers import SGD
def mlp(dim):
model = Sequential()
model.add(Dense(256, input_dim=dim, init='normal', activation='relu'))
#model.add(Dropout(0.5))
model.add(Dense(256, init='normal', activation='relu'))
#model.add(Dropout(0.5))
model.add(Dense(256, init='normal', activation='relu'))
#model.add(Dropout(0.5))
model.add(Dense(1, init='normal', activation='sigmoid'))
sgd = SGD(lr=0.1, decay=1e-7, momentum=0.0, nesterov=True)
model.compile(#loss='binary_crossentropy',
loss='mean_squared_error',
optimizer=sgd, #'rmsprop',
metrics=['accuracy'])
return model
def regression_with_regularization(dim):
# Usar L2
# create model
model = Sequential()
model.add(Dense(1024, input_dim=dim, init='normal', activation='relu', W_regularizer=l2(0.0001)))
model.add(Dense(512, input_dim=dim, init='normal', activation='relu'))
model.add(Dense(1, init='normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy'])
return model
def train(words, predictions, iterations = 800, model = None):
if model is None:
model = mlp(words.shape[1])
predictions = (predictions.astype('float') - 1.0)/ 4.0
history = model.fit(words, predictions,
nb_epoch=iterations, batch_size=5000,
verbose=2, validation_split=0.1, shuffle=True)
return model