-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanswer_retrieval_given section.py
163 lines (130 loc) · 5.03 KB
/
answer_retrieval_given section.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import sys
import pandas as pd
from simpletransformers.classification import ClassificationModel, ClassificationArgs
from sklearn.metrics import classification_report, precision_recall_fscore_support
import numpy as np
import torch
import random
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
MANUAL_SEED = 42
set_seed(MANUAL_SEED)
data_folder = '<PATH TO DATA FOLDER>'
train_filepath = os.path.join(data_folder, 'train.csv')
valid_filepath = os.path.join(data_folder, 'valid.csv')
test_filepath = os.path.join(data_folder, 'test.csv')
def get_df(filepath):
df = pd.read_csv(filepath, usecols = ['question', 'text', 'label'])
df = df.rename(columns={'question': 'text_a', 'text': 'text_b', 'label': 'labels'}).dropna().reset_index(drop = True)
print(df.columns)
return df
df_train = get_df(train_filepath)
df_valid = get_df(valid_filepath)
df_test = get_df(test_filepath)
TRAIN_BATCH_SIZE = 16
EVAL_BATCH_SIZE = 16
steps_per_epoch = int(np.ceil(len(df_train) / float(TRAIN_BATCH_SIZE)))
evaluate_during_training_steps = int(steps_per_epoch/2)
save_steps = evaluate_during_training_steps
logging_steps = int(steps_per_epoch/5)
'''
train_args = {
'n_gpu': 1,
'max_seq_length': 512,
'num_train_epochs': 4,
'evaluate_during_training': True,
'evaluate_during_training_verbose': True,
# 'regression': True,
'overwrite_output_dir': True,
'use_cached_eval_features': True,
# 'use_multiprocessing_for_evaluation': True,
# 'reprocess_input_data': True,
'logging_steps': logging_steps,
'evaluate_during_training_steps': evaluate_during_training_steps,
'manual_seed': MANUAL_SEED,
'train_batch_size': TRAIN_BATCH_SIZE,
'eval_batch_size': EVAL_BATCH_SIZE,
'save_steps': save_steps
}
'''
train_args = ClassificationArgs()
train_args.n_gpu = 1
train_args.max_seq_length = 512
train_args.evaluate_during_training = True
train_args.evaluate_during_training_steps = evaluate_during_training_steps
train_args.train_batch_size = TRAIN_BATCH_SIZE
train_args.eval_batch_size = EVAL_BATCH_SIZE
train_args.num_train_epochs = 4
train_args.MANUAL_SEED = MANUAL_SEED
train_args.save_steps = save_steps
train_args.learning_rate = 4e-5
MODEL_NAME = sys.argv[1]
HF_MODEL_PARAMETER = sys.argv[2]
NUM_LABELS = 2
model = ClassificationModel(MODEL_NAME, HF_MODEL_PARAMETER, num_labels=NUM_LABELS, args=train_args)
out_train = model.train_model(train_df = df_train, eval_df = df_valid)
print()
print('Loading best model ....')
# train_args['use_cached_eval_features'] = False
# train_args['overwrite_output_dir'] = False
if 'best_model' in os.listdir('outputs'):
model = ClassificationModel(
MODEL_NAME, "outputs/best_model", num_labels=NUM_LABELS, args=train_args
)
else:
model = ClassificationModel(
MODEL_NAME, "outputs", num_labels=NUM_LABELS, args=train_args
)
test_result, test_model_outputs, test_wrong_predictions = model.eval_model(df_test)
print(test_model_outputs[:10])
# report = classification_report(df_test['labels'].tolist(), np.argmax(test_model_outputs, axis = 1).tolist(), output_dict=True)
# df = pd.DataFrame(report).transpose()
# df.to_csv('similarity_classification_report.csv')
def get_metrics(test_model_outputs, df_test):
targets = df_test['labels']
class_1_outputs = test_model_outputs[:, 1]
class_1_outputs = [1 if item > 0.5 else 0 for item in class_1_outputs]
q_list = df_test['text_a'].tolist()
q_target_dict = {}
q_output_dict = {}
for i, q in enumerate(q_list):
if q not in q_target_dict:
q_target_dict[q] = []
q_output_dict[q] = []
q_target_dict[q].append(targets[i])
q_output_dict[q].append(class_1_outputs[i])
num_questions = len(q_target_dict)
avg_prec = 0
avg_rec = 0
avg_f1 = 0
for q in q_target_dict:
prec, rec, f1, _ = precision_recall_fscore_support(q_target_dict[q], q_output_dict[q], average='macro')
avg_prec += prec
avg_rec += rec
avg_f1 += f1
avg_prec = avg_prec/num_questions
avg_rec = avg_rec/num_questions
avg_f1 = avg_f1/num_questions
return avg_prec, avg_rec, avg_f1, num_questions
with open('results.txt', 'w') as f:
avg_prec, avg_rec, avg_f1, num_questions = get_metrics(test_model_outputs, df_test)
f.write('For {} test QA pairs -\n'.format(num_questions))
f.write('Avg. Precision: {}\n'.format(np.round(avg_prec, 4)))
f.write('Avg. Recall: {}\n'.format(np.round(avg_rec, 4)))
f.write('Avg. F1: {}\n'.format(np.round(avg_f1, 4)))
'''
with open('results.txt', 'w') as f:
for K in [1, 3, 5]:
perc, num_correct, num_questions = get_hits(test_model_outputs, df_test, K = K)
f.write('For K = {}:'.format(K))
f.write('\n')
f.write('{}%, {} are correct out of {} QA pairs in test set'.format(perc, num_correct, num_questions))
f.write('\n\n')
'''