forked from breeze7-opt/optimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdaGC.py
95 lines (78 loc) · 3.55 KB
/
AdaGC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# python3.11
# -*- coding: utf-8 -*-
# @Time : 2023/12/28 15:04
# @Author : Feng Su
# @File : AdaGC.py
# @Software: PyCharm
import math
import torch
from torch.optim.optimizer import Optimizer
from types_2 import Betas2, OptFloat, OptLossClosure, Params
import time
__all__ = ('AdaGC',)
class AdaGC(Optimizer):
def __init__(
self,
params: Params,
lr: float = 1e-3,
betas: Betas2 = (0.9, 0.999),
beta3:float= 0.999,
eps: float = 1e-8,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if eps < 0.0:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
if not 0.0 <= beta3 < 1.0:
raise ValueError('Invalid beta3 parameter: {}'.format(beta3))
defaults = dict(lr=lr,betas=betas,eps=eps,beta3=beta3)
super(AdaGC, self).__init__(params, defaults)
def step(self, closure: OptLossClosure = None) -> OptFloat:
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'AdaGC does not support sparse gradients, '
'please consider SparseAdam instead'
)
state = self.state[p]
beta1, beta2 = group['betas']
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format)
state['exp_avg_var'] = torch.zeros_like(p.data, memory_format=torch.preserve_format)
state['exp_avg_s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format)
state['exp_avg_lr'] = torch.zeros_like(p.data, memory_format=torch.preserve_format)
state['PG'] = torch.zeros_like(p.data, memory_format=torch.preserve_format)
state['exp_grad_norm'] = torch.zeros_like(torch.norm(grad,p=2))
PG, exp_avg, exp_avg_var=state['PG'], state['exp_avg'],state['exp_avg_var']
exp_avg_s, exp_avg_lr= state['exp_avg_s'], state['exp_avg_lr']
step = state['step']
lr = group['lr']
beta3 = group['beta3']
step += 1
exp_avg.mul_(beta1).add_(grad,alpha=1-beta1)
bia=grad-PG
exp_avg_s.mul_(beta1).add_(bia,alpha=1-beta1)
nt = exp_avg.mul(beta2).add(exp_avg_s,alpha = 1-beta2)
exp_avg_var.mul_(beta2).add_(bia.mul(bia),alpha=1-beta2)
denom = exp_avg_var.sqrt().add(group['eps'])
step_size = lr
step_size = torch.full_like(denom, step_size)
step_size.div_(denom)
exp_avg_lr.mul_(beta3).add_(step_size, alpha=1 - beta3)
step_size = torch.min(step_size, exp_avg_lr)
step_size.mul_(nt)
state['PG'] =nt
p.data.add_(-step_size)
return loss