|
4 | 4 | using namespace std;
|
5 | 5 |
|
6 | 6 | void FannTest::SetUp() {
|
7 |
| - //ensure random generator is seeded at a known value to ensure reproducible results |
8 |
| - srand(0); |
9 |
| - fann_disable_seed_rand(); |
| 7 | + // ensure random generator is seeded at a known value to ensure reproducible results |
| 8 | + srand(0); |
| 9 | + fann_disable_seed_rand(); |
10 | 10 | }
|
11 | 11 |
|
12 | 12 | void FannTest::TearDown() {
|
13 |
| - net.destroy(); |
14 |
| - data.destroy_train(); |
| 13 | + net.destroy(); |
| 14 | + data.destroy_train(); |
15 | 15 | }
|
16 | 16 |
|
17 | 17 | void FannTest::AssertCreate(neural_net &net, unsigned int numLayers, const unsigned int *layers,
|
18 | 18 | unsigned int neurons, unsigned int connections) {
|
19 |
| - EXPECT_EQ(numLayers, net.get_num_layers()); |
20 |
| - EXPECT_EQ(layers[0], net.get_num_input()); |
21 |
| - EXPECT_EQ(layers[numLayers - 1], net.get_num_output()); |
22 |
| - unsigned int *layers_res = new unsigned int[numLayers]; |
23 |
| - net.get_layer_array(layers_res); |
24 |
| - for (unsigned int i = 0; i < numLayers; i++) { |
25 |
| - EXPECT_EQ(layers[i], layers_res[i]); |
26 |
| - } |
27 |
| - delete[] layers_res; |
| 19 | + EXPECT_EQ(numLayers, net.get_num_layers()); |
| 20 | + EXPECT_EQ(layers[0], net.get_num_input()); |
| 21 | + EXPECT_EQ(layers[numLayers - 1], net.get_num_output()); |
| 22 | + unsigned int *layers_res = new unsigned int[numLayers]; |
| 23 | + net.get_layer_array(layers_res); |
| 24 | + for (unsigned int i = 0; i < numLayers; i++) { |
| 25 | + EXPECT_EQ(layers[i], layers_res[i]); |
| 26 | + } |
| 27 | + delete[] layers_res; |
28 | 28 |
|
29 |
| - EXPECT_EQ(neurons, net.get_total_neurons()); |
30 |
| - EXPECT_EQ(connections, net.get_total_connections()); |
| 29 | + EXPECT_EQ(neurons, net.get_total_neurons()); |
| 30 | + EXPECT_EQ(connections, net.get_total_connections()); |
31 | 31 |
|
32 |
| - AssertWeights(net, -0.09, 0.09, 0.0); |
| 32 | + AssertWeights(net, -0.09, 0.09, 0.0); |
33 | 33 | }
|
34 | 34 |
|
35 |
| -void FannTest::AssertCreateAndCopy(neural_net &net, unsigned int numLayers, const unsigned int *layers, unsigned int neurons, |
| 35 | +void FannTest::AssertCreateAndCopy(neural_net &net, unsigned int numLayers, |
| 36 | + const unsigned int *layers, unsigned int neurons, |
36 | 37 | unsigned int connections) {
|
37 |
| - AssertCreate(net, numLayers, layers, neurons, connections); |
38 |
| - neural_net net_copy(net); |
39 |
| - AssertCreate(net_copy, numLayers, layers, neurons, connections); |
| 38 | + AssertCreate(net, numLayers, layers, neurons, connections); |
| 39 | + neural_net net_copy(net); |
| 40 | + AssertCreate(net_copy, numLayers, layers, neurons, connections); |
40 | 41 | }
|
41 | 42 |
|
42 | 43 | void FannTest::AssertWeights(neural_net &net, fann_type min, fann_type max, fann_type avg) {
|
43 |
| - connection *connections = new connection[net.get_total_connections()]; |
44 |
| - net.get_connection_array(connections); |
| 44 | + connection *connections = new connection[net.get_total_connections()]; |
| 45 | + net.get_connection_array(connections); |
45 | 46 |
|
46 |
| - fann_type minWeight = connections[0].weight; |
47 |
| - fann_type maxWeight = connections[0].weight; |
48 |
| - fann_type totalWeight = 0.0; |
49 |
| - for (int i = 1; i < net.get_total_connections(); ++i) { |
50 |
| - if (connections[i].weight < minWeight) |
51 |
| - minWeight = connections[i].weight; |
52 |
| - if (connections[i].weight > maxWeight) |
53 |
| - maxWeight = connections[i].weight; |
54 |
| - totalWeight += connections[i].weight; |
55 |
| - } |
| 47 | + fann_type minWeight = connections[0].weight; |
| 48 | + fann_type maxWeight = connections[0].weight; |
| 49 | + fann_type totalWeight = 0.0; |
| 50 | + for (int i = 1; i < net.get_total_connections(); ++i) { |
| 51 | + if (connections[i].weight < minWeight) minWeight = connections[i].weight; |
| 52 | + if (connections[i].weight > maxWeight) maxWeight = connections[i].weight; |
| 53 | + totalWeight += connections[i].weight; |
| 54 | + } |
56 | 55 |
|
57 |
| - EXPECT_NEAR(min, minWeight, 0.05); |
58 |
| - EXPECT_NEAR(max, maxWeight, 0.05); |
59 |
| - EXPECT_NEAR(avg, totalWeight / (fann_type) net.get_total_connections(), 0.5); |
| 56 | + EXPECT_NEAR(min, minWeight, 0.05); |
| 57 | + EXPECT_NEAR(max, maxWeight, 0.05); |
| 58 | + EXPECT_NEAR(avg, totalWeight / (fann_type)net.get_total_connections(), 0.5); |
60 | 59 | }
|
61 | 60 |
|
62 | 61 | TEST_F(FannTest, CreateStandardThreeLayers) {
|
63 |
| - neural_net net(LAYER, 3, 2, 3, 4); |
64 |
| - unsigned int layers[] = {2, 3, 4}; |
65 |
| - AssertCreateAndCopy(net, 3, layers, 11, 25); |
| 62 | + neural_net net(LAYER, 3, 2, 3, 4); |
| 63 | + unsigned int layers[] = {2, 3, 4}; |
| 64 | + AssertCreateAndCopy(net, 3, layers, 11, 25); |
66 | 65 | }
|
67 | 66 |
|
68 | 67 | TEST_F(FannTest, CreateStandardThreeLayersUsingCreateMethod) {
|
69 |
| - ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
70 |
| - unsigned int layers[] = {2, 3, 4}; |
71 |
| - AssertCreateAndCopy(net, 3, layers, 11, 25); |
| 68 | + ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
| 69 | + unsigned int layers[] = {2, 3, 4}; |
| 70 | + AssertCreateAndCopy(net, 3, layers, 11, 25); |
72 | 71 | }
|
73 | 72 |
|
74 | 73 | TEST_F(FannTest, CreateStandardFourLayersArray) {
|
75 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
76 |
| - neural_net net(LAYER, 4, layers); |
77 |
| - AssertCreateAndCopy(net, 4, layers, 17, 50); |
| 74 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 75 | + neural_net net(LAYER, 4, layers); |
| 76 | + AssertCreateAndCopy(net, 4, layers, 17, 50); |
78 | 77 | }
|
79 | 78 |
|
80 | 79 | TEST_F(FannTest, CreateStandardFourLayersArrayUsingCreateMethod) {
|
81 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
82 |
| - ASSERT_TRUE(net.create_standard_array(4, layers)); |
83 |
| - AssertCreateAndCopy(net, 4, layers, 17, 50); |
| 80 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 81 | + ASSERT_TRUE(net.create_standard_array(4, layers)); |
| 82 | + AssertCreateAndCopy(net, 4, layers, 17, 50); |
84 | 83 | }
|
85 | 84 |
|
86 | 85 | TEST_F(FannTest, CreateStandardFourLayersVector) {
|
87 |
| - vector<unsigned int> layers{2, 3, 4, 5}; |
88 |
| - neural_net net(LAYER, layers.begin(), layers.end()); |
89 |
| - AssertCreateAndCopy(net, 4, layers.data(), 17, 50); |
| 86 | + vector<unsigned int> layers{2, 3, 4, 5}; |
| 87 | + neural_net net(LAYER, layers.begin(), layers.end()); |
| 88 | + AssertCreateAndCopy(net, 4, layers.data(), 17, 50); |
90 | 89 | }
|
91 | 90 |
|
92 | 91 | TEST_F(FannTest, CreateSparseFourLayers) {
|
93 |
| - neural_net net(0.5, 4, 2, 3, 4, 5); |
94 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
95 |
| - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 92 | + neural_net net(0.5, 4, 2, 3, 4, 5); |
| 93 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 94 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
96 | 95 | }
|
97 | 96 |
|
98 | 97 | TEST_F(FannTest, CreateSparseFourLayersUsingCreateMethod) {
|
99 |
| - ASSERT_TRUE(net.create_sparse(0.5f, 4, 2, 3, 4, 5)); |
100 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
101 |
| - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 98 | + ASSERT_TRUE(net.create_sparse(0.5f, 4, 2, 3, 4, 5)); |
| 99 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 100 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
102 | 101 | }
|
103 | 102 |
|
104 | 103 | TEST_F(FannTest, CreateSparseArrayFourLayers) {
|
105 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
106 |
| - neural_net net(0.5f, 4, layers); |
107 |
| - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 104 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 105 | + neural_net net(0.5f, 4, layers); |
| 106 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
108 | 107 | }
|
109 | 108 |
|
110 | 109 | TEST_F(FannTest, CreateSparseArrayFourLayersUsingCreateMethod) {
|
111 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
112 |
| - ASSERT_TRUE(net.create_sparse_array(0.5f, 4, layers)); |
113 |
| - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 110 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 111 | + ASSERT_TRUE(net.create_sparse_array(0.5f, 4, layers)); |
| 112 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
114 | 113 | }
|
115 | 114 |
|
116 | 115 | TEST_F(FannTest, CreateSparseArrayWithMinimalConnectivity) {
|
117 |
| - unsigned int layers[] = {2, 2, 2}; |
118 |
| - neural_net net(0.01f, 3, layers); |
119 |
| - AssertCreateAndCopy(net, 3, layers, 8, 8); |
| 116 | + unsigned int layers[] = {2, 2, 2}; |
| 117 | + neural_net net(0.01f, 3, layers); |
| 118 | + AssertCreateAndCopy(net, 3, layers, 8, 8); |
120 | 119 | }
|
121 | 120 |
|
122 | 121 | TEST_F(FannTest, CreateShortcutFourLayers) {
|
123 |
| - neural_net net(SHORTCUT, 4, 2, 3, 4, 5); |
124 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
125 |
| - AssertCreateAndCopy(net, 4, layers, 15, 83); |
126 |
| - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 122 | + neural_net net(SHORTCUT, 4, 2, 3, 4, 5); |
| 123 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 124 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 125 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
127 | 126 | }
|
128 | 127 |
|
129 | 128 | TEST_F(FannTest, CreateShortcutFourLayersUsingCreateMethod) {
|
130 |
| - ASSERT_TRUE(net.create_shortcut(4, 2, 3, 4, 5)); |
131 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
132 |
| - AssertCreateAndCopy(net, 4, layers, 15, 83); |
133 |
| - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 129 | + ASSERT_TRUE(net.create_shortcut(4, 2, 3, 4, 5)); |
| 130 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 131 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 132 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
134 | 133 | }
|
135 | 134 |
|
136 | 135 | TEST_F(FannTest, CreateShortcutArrayFourLayers) {
|
137 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
138 |
| - neural_net net(SHORTCUT, 4, layers); |
139 |
| - AssertCreateAndCopy(net, 4, layers, 15, 83); |
140 |
| - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 136 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 137 | + neural_net net(SHORTCUT, 4, layers); |
| 138 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 139 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
141 | 140 | }
|
142 | 141 |
|
143 | 142 | TEST_F(FannTest, CreateShortcutArrayFourLayersUsingCreateMethod) {
|
144 |
| - unsigned int layers[] = {2, 3, 4, 5}; |
145 |
| - ASSERT_TRUE(net.create_shortcut_array(4, layers)); |
146 |
| - AssertCreateAndCopy(net, 4, layers, 15, 83); |
147 |
| - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 143 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 144 | + ASSERT_TRUE(net.create_shortcut_array(4, layers)); |
| 145 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 146 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
148 | 147 | }
|
149 | 148 |
|
150 | 149 | TEST_F(FannTest, CreateFromFile) {
|
151 |
| - ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
152 |
| - neural_net netToBeSaved(LAYER, 3, 2, 3, 4); |
153 |
| - ASSERT_TRUE(netToBeSaved.save("tmpfile")); |
| 150 | + ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
| 151 | + neural_net netToBeSaved(LAYER, 3, 2, 3, 4); |
| 152 | + ASSERT_TRUE(netToBeSaved.save("tmpfile")); |
154 | 153 |
|
155 |
| - neural_net netToBeLoaded("tmpfile"); |
156 |
| - unsigned int layers[] = {2, 3, 4}; |
157 |
| - AssertCreateAndCopy(netToBeLoaded, 3, layers, 11, 25); |
| 154 | + neural_net netToBeLoaded("tmpfile"); |
| 155 | + unsigned int layers[] = {2, 3, 4}; |
| 156 | + AssertCreateAndCopy(netToBeLoaded, 3, layers, 11, 25); |
158 | 157 | }
|
159 | 158 |
|
160 | 159 | TEST_F(FannTest, CreateFromFileUsingCreateMethod) {
|
161 |
| - ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
162 |
| - neural_net inputNet(LAYER, 3, 2, 3, 4); |
163 |
| - ASSERT_TRUE(inputNet.save("tmpfile")); |
| 160 | + ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
| 161 | + neural_net inputNet(LAYER, 3, 2, 3, 4); |
| 162 | + ASSERT_TRUE(inputNet.save("tmpfile")); |
164 | 163 |
|
165 |
| - ASSERT_TRUE(net.create_from_file("tmpfile")); |
| 164 | + ASSERT_TRUE(net.create_from_file("tmpfile")); |
166 | 165 |
|
167 |
| - unsigned int layers[] = {2, 3, 4}; |
168 |
| - AssertCreateAndCopy(net, 3, layers, 11, 25); |
| 166 | + unsigned int layers[] = {2, 3, 4}; |
| 167 | + AssertCreateAndCopy(net, 3, layers, 11, 25); |
169 | 168 | }
|
170 | 169 |
|
171 | 170 | TEST_F(FannTest, RandomizeWeights) {
|
172 |
| - neural_net net(LAYER, 2, 20, 10); |
173 |
| - net.randomize_weights(-1.0, 1.0); |
174 |
| - AssertWeights(net, -1.0, 1.0, 0); |
| 171 | + neural_net net(LAYER, 2, 20, 10); |
| 172 | + net.randomize_weights(-1.0, 1.0); |
| 173 | + AssertWeights(net, -1.0, 1.0, 0); |
175 | 174 | }
|
0 commit comments