-
Notifications
You must be signed in to change notification settings - Fork 33
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
关于Table4 #17
Comments
您好,感谢您对我们工作的关注! |
感谢您的回复,请问可否帮忙跑一下,prenet的rain100l和H的训练集么? |
实在不好意思,这段时间太忙了,而且我们这边卡的资源分配比较紧张,如果您那边有条件,可以直接用作者公布的代码在rain100l和H训练集上训练 |
好的感谢老哥
发自我的iPhone
…------------------ 原始邮件 ------------------
发件人: Kuijiang <[email protected]>
发送时间: 2020年10月15日 14:01
收件人: kuihua/MSPFN <[email protected]>
抄送: suzhipeng <[email protected]>, Author <[email protected]>
主题: 回复:[kuihua/MSPFN] 关于Table4 (#17)
实在不好意思,这段时间太忙了,而且我们这边卡的资源分配比较紧张,如果您那边有条件,可以直接用作者公布的代码在rain100l和H训练集上训练
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub, or unsubscribe.
|
不客气了,有啥问题欢迎交流讨论 |
我想问下,自己的训练数据集是放在preprocess.py生成的/raw/train_rain里面是么?那个cleansample和rainsample里面的是用来干嘛的 |
放在cleansample和rainsample,raw/train_rain里面是你用来训练的样本,比如你的train和val的比例是1:9,那么raw/train_rain里面就有占比0.9的训练样本,0.1的样本用来评估 |
PreNet.最后Rain100l和100H的数据集都达到了37.48和29.46,似乎不像你在文中描述的这么低
The text was updated successfully, but these errors were encountered: