forked from facebookresearch/seamless_communication
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggml_convert.py
443 lines (358 loc) · 13.7 KB
/
ggml_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# MIT_LICENSE file in the root directory of this source tree.
import dataclasses
import logging
import math
import struct
from enum import Enum
from io import BufferedWriter
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from fairseq2.assets import AssetCard
from fairseq2.models.transformer.frontend import TransformerEmbeddingFrontend
from fairseq2.nn import SinusoidalPositionEncoder
from fairseq2.nn.transformer import RelativePositionalEncoding
from seamless_communication.models import unity
import ggml
Preprocessor = Callable[[Any], Any]
def convert_model(
model_name: Union[str, torch.nn.Module],
out: Optional[Path] = None,
hparams: Optional[Dict[str, Any]] = None,
vocab: Optional[List[Tuple[str, float]]] = None,
) -> None:
if isinstance(model_name, str):
# Load the corresponding fairseq2 model
if out is None:
out = Path(model_name).with_suffix(".ggml")
# The type of model depends on the name
if "unity" in model_name or "seamlessM4T" in model_name:
if hparams is None:
model_config = unity.load_unity_config(model_name)
hparams = flatten_config(
dataclasses.asdict(model_config), separator="__"
)
print(hparams)
model = unity.load_unity_model(model_name)
if vocab is None:
tokenizer = unity.load_unity_text_tokenizer(model_name)
vocab = read_vocab(tokenizer)
else:
raise ValueError(f"Unsupported model type: {model_name}")
else:
# Use the model passed explicitly
assert (
out is not None
), "output path is required when explicitly passing a module"
hparams = hparams or {}
model = model_name
state_dict = model.state_dict()
fixup_model(model, state_dict)
layer_config = read_layer_config(model)
vocab = vocab or []
write_ggml_file(out, hparams, layer_config, vocab, state_dict)
def _nested_getattr(model: Any, name: str) -> Any:
parts = name.split(".")
node = model
for part in parts:
node = getattr(node, part)
if node is None:
return None
return node
def find_children(model: torch.nn.Module, t: type) -> List[Tuple[str, torch.nn.Module]]:
queue = list(model._modules.items())
modules = []
while queue:
name, node = queue.pop()
if node is None:
continue
if isinstance(node, t):
modules.append((name, node))
for child_name, child_node in node._modules.items():
queue.append((".".join((name, child_name)), child_node))
return modules
def fixup_model(model: torch.nn.Module, state_dict: Dict[str, torch.Tensor]) -> None:
# Bake the embedding scaling into the weights
frontends = find_children(model, TransformerEmbeddingFrontend)
print(
"Upgrading the following TransformerEmbeddingFrontend:",
[x[0] for x in frontends],
)
for name, frontend in frontends:
embed_weights = state_dict[name + ".embed.weight"]
state_dict[name + ".embed.weight"] = embed_weights * frontend.scale
# Sinusoidal embeddings are typically not saved since they are easily recomputed,
# but this allows to avoid porting the sinusoidal logic to GGML
pos_encoders = find_children(model, SinusoidalPositionEncoder)
print(
"Upgrading the following SinusoidalPositionEncoder:",
[x[0] for x in pos_encoders],
)
for name, pos_encoder in pos_encoders:
assert isinstance(pos_encoder.freqs, torch.Tensor)
assert name not in state_dict
state_dict[name] = pos_encoder.freqs
relative_pos_encs = find_children(model, RelativePositionalEncoding)
# speech_encoder has several copies of the relative_pos_enc module.
# For efficiency reasons we only make one copy of it to GGML.
if relative_pos_encs:
print("Merging all speech_encoder RelativePositionalEncoding into one.")
_, rel_pos_enc = relative_pos_encs[0]
assert isinstance(rel_pos_enc.freqs, torch.Tensor)
state_dict["speech_encoder.pos_enc"] = rel_pos_enc.freqs
def read_vocab(tokenizer: Any) -> List[Tuple[str, float]]:
vocab_info = tokenizer.vocab_info
vocab = [
(tokenizer.model.index_to_token(i).replace("▁", " "), -i)
for i in range(vocab_info.size)
]
return vocab # type: ignore[return-value]
def write_ggml_file(
out: Path,
hparams: Dict[str, Any],
layer_config: Dict[str, Any],
vocab: List[Tuple[str, float]],
state_dict: Dict[str, torch.Tensor],
) -> None:
with out.open("wb") as o:
write_ggml_header(o)
write_hparams(o, hparams)
write_hparams(o, layer_config)
write_vocab(o, vocab)
write_state_dict(o, state_dict)
def write_ggml_header(out: BufferedWriter) -> None:
"""Write GGML header (in reverse cause big-endian)"""
out.write(b"ggml"[::-1])
def write_hparams(out: BufferedWriter, hparams: Dict[str, Any]) -> None:
"""Write hyper parameters.
:params hparams:
flattened dict containing model's hyper parameters.
"""
simple_vals = {}
for key, value in hparams.items():
try:
simple_vals[key] = to_ctype(value)
except ValueError:
logging.warning(f"Skipping config for key {key}={value!r}")
continue
out.write(struct.pack("<q", len(simple_vals)))
for key, (ctype, cvalue) in simple_vals.items():
write_string(out, key)
b = struct.pack(ctype, cvalue)
assert len(b) == 8
out.write(b)
logging.info(f"Saved {len(simple_vals)} params.")
def write_vocab(out: BufferedWriter, vocab: List[Tuple[str, float]]) -> None:
out.write(struct.pack("<q", len(vocab)))
# Write all words concatenated in a buffer
words = [bytes(w, "utf8") for w, score in vocab]
packed_words = b"\0".join(words)
# We use i32 to allow reusing the string loading codes
packed_len = struct.pack("<i", len(packed_words))
out.write(packed_len)
out.write(packed_words)
lengths = torch.tensor([len(w) for w in words], dtype=torch.int8)
write_tensor(out, lengths)
scores = torch.tensor([score for w, score in vocab], dtype=torch.float32)
write_tensor(out, scores)
def write_state_dict(out: BufferedWriter, state_dict: Dict[str, torch.Tensor]) -> None:
"""Write pytorch state dict.
:paras state_dict:
state dict returned by pytorch model
"""
out.write(struct.pack("<q", len(state_dict)))
# Size of each tensor
byte_size = sum(x.numel() * x.element_size() for x in state_dict.values())
# + tensor overhead
byte_size += ggml.ggml_tensor_overhead() * (len(state_dict) + 10)
out.write(struct.pack("<q", byte_size))
logging.warning(
f"Saving a ggml file with {len(state_dict)} tensors, for an estimated amount of {byte_size / (1024**3):.3f} GGML Gb"
)
for key, value in state_dict.items():
write_string(out, key)
if key.endswith(".bias") and value.ndim == 1 and "adaptor" not in key:
# GGML broadcasting isn't as strong as numpy
value = value.reshape(1, -1)
if "pointwise_conv" in key: # pointwise_conv / depthwise_conv
value = value.squeeze(-1)
if "depthwise_conv" in key:
value = value.squeeze(1)
write_tensor(out, value.contiguous())
def write_string(out: BufferedWriter, value: str) -> None:
"""Write string in utf-8 format.
:params value:
string value to dump.
"""
str_ = value.encode("utf-8")
packed_len = struct.pack("<i", len(str_))
assert len(packed_len) == 4
out.write(packed_len)
out.write(str_)
def write_tensor(out: BufferedWriter, value: torch.Tensor) -> None:
"""Write torch tensor in ggml format.
First we save the number of dimensions and the dtype.
Then we save the data as numpy array.
:params value:
Tensor to dump.
"""
if value.dtype is torch.int64:
# GGML doesn't have int64, downcast it
value = value.to(dtype=torch.int32)
if value.ndim == 0:
# GGML doesn't support scalar as tensors.
value = value.reshape(1)
data = value.numpy()
n_dims = data.ndim
assert n_dims < 5, "ggml doesn't support 5 dims tensors"
assert n_dims >= 1, "ggml doesn't support 0 dim tensors"
ftype = torch_to_ggml_type(value.dtype)
out.write(struct.pack("<i", n_dims))
out.write(struct.pack("<i", ftype))
for i in range(n_dims):
# ggml uses long for shape
out.write(struct.pack("<q", data.shape[n_dims - 1 - i]))
data.tofile(out)
def torch_to_ggml_type(dtype: torch.dtype) -> int:
if dtype is torch.float32:
return ggml.GGML_TYPE_F32
elif dtype is torch.float16:
return ggml.GGML_TYPE_F16
elif dtype is torch.int32:
return ggml.GGML_TYPE_I32
elif dtype is torch.int8:
return ggml.GGML_TYPE_I8
else:
raise NotImplementedError(f"{dtype} is not mapped to a GGML_TYPE")
def flatten_config(
config: Dict[str, Any],
separator: str,
config_preprocessor: Optional[Preprocessor] = None,
) -> Dict[str, Any]:
"""Flatten nested dictionnary
:param config:
nested dictionnary containing model config.
:param separator:
string separator used when flattening nested hparams
:param config_preprocessor:
Preprocessor used for config/hparams values
:returns:
flat dictionnary
"""
if config_preprocessor is None:
config_preprocessor = lambda x: x
def __flatten(config: Dict[str, Any], prefix: str = "") -> Dict[str, Any]:
result = {}
for key in config:
new_key = f"{prefix}{key}"
if isinstance(config[key], dict):
nested_result = __flatten(config[key], f"{new_key}{separator}")
result.update(nested_result)
else:
new_config = config_preprocessor(config[key])
if new_config is not None:
result[new_key] = config[key]
return result
return __flatten(config)
def read_layer_config(model: torch.nn.Module) -> Dict[str, Any]:
layer_config = {}
def _append_node_config(node: Any, prefix: str) -> None:
for k, v in node.__dict__.items():
# Skip special members. In particular all children module and tensors
# will be hidden in special dicts `_parameters` and `_modules`
if k.startswith("_"):
continue
# All modules have a "training" flag
if k in ("training", "init_fn"):
continue
if v is None:
continue
try:
to_ctype(v)
except ValueError:
logging.warning(f"Skipping layer config {k}={v!r}")
continue
layer_config[prefix + k] = v
_append_node_config(model, "")
for name, node in find_children(model, torch.nn.Module):
_append_node_config(node, name + ".")
return layer_config
def to_ctype(value: Any) -> Tuple[str, Any]:
"""Transform python type to ctype.
Note: we always use little-endian and 8-byte types.
This make the format independent of the current platform.
:params value:
value to cast into ctype
:returns:
A tuple of ctype and cvalue.
"""
if isinstance(value, int):
return ("<q", value)
if isinstance(value, float):
return ("<d", value)
if isinstance(value, bool):
return ("<q", value)
if isinstance(value, Enum):
return ("<q", value.value)
if isinstance(value, tuple) and len(value) == 1:
return to_ctype(value[0])
if isinstance(value, str) and len(value) < 8:
value = bytes(value, "ascii")
if len(value) < 8:
value = value + (8 - len(value)) * b"\0"
return ("8s", value)
raise ValueError(f"Unsupported type {type(value)}")
def get_cpp_type(value: Any) -> str:
"""Return equivalent cpp type in string format
:params value:
value to cast into ctype
:returns:
str containing cpp type
"""
# used to have compatibility between types
try:
ctype, _ = to_ctype(value)
except ValueError as e:
return f"// Error: {e}"
if ctype == "i":
return "std::int32_t"
if ctype == "l":
return "std::int64_t"
if ctype == "f":
return "float"
if ctype == "d":
return "double"
if ctype == "?":
return "bool"
raise RuntimeError(
f"Should not have reached this part." f"Missing cpp translation for {ctype}"
)
def generate_hparams_struct(
hparams: Dict[str, Any],
struct_name: str,
) -> str:
"""Generate a c++ struct to hold the model hyper-parameters.
:param hparams:
Flattened config of the model.
:param struct_name:
Name of the generated struct.
"""
struct = f"struct {struct_name} {{"
fields = [f" {get_cpp_type(value)} {key};" for key, value in hparams.items()]
struct = "\n".join([struct] + fields + ["};\n"])
valid_fields = [
key for key, value in hparams.items() if "Error" not in get_cpp_type(value)
]
read_struct = f"void read_{struct_name}({struct_name}& out, std::ifstream &fin) {{"
read_fields = [
f" fin.read((char*) &out.{field}, sizeof(out.{field}));"
for field in valid_fields
]
read_struct = "\n".join([read_struct] + read_fields + ["};\n"])
return "\n".join([struct, read_struct])
if __name__ == "__main__":
import func_argparse
func_argparse.single_main(convert_model)