-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
183 lines (130 loc) · 3.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python
# coding: utf-8
# In[14]:
import keras
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.core import Flatten
from keras.layers.core import Dense
from keras.layers.core import Activation
from keras.layers.core import Dropout
from keras.layers import Input
from keras.models import Model
from keras.regularizers import *
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator, load_img
from keras import backend as K
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
from os import listdir
from os.path import isfile, join
from keras import *
from keras.models import load_model
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
# In[37]:
img_width = 200
img_height = 250
train_data_dir = './Train'
validation_data_dir = './Validate'
train_samples = 3420
validation_samples = 482
epochs = 15
batch_size = 32
if K.image_data_format() == 'channels_first':
input_shape = (3,img_width, img_height)
print("C.F")
else:
input_shape = (img_width, img_height,3)
print("C.L")
# In[38]:
model = Sequential()
model.add(Conv2D(128, (2, 2),input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(128, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(128, (2, 2)))
model.add(Activation('linear'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(64, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(64, (2, 2)))
model.add(Activation('linear'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('linear'))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('linear'))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(2048))
model.add(Activation('linear'))
model.add(Activation('relu'))
model.add(Dense(1024))
model.add(Activation('linear'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(Dense(1024))
model.add(Activation('linear'))
model.add(Activation('relu'))
model.add(Dense(3))
model.add(Activation('softmax'))
# In[39]:
import keras
from keras import optimizers
model.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.Adam(lr=.0001,beta_2=0.999,beta_1=0.90),
metrics=['accuracy'])
# In[40]:
train_datagen = ImageDataGenerator()
# In[41]:
test_datagen = ImageDataGenerator()
# In[42]:
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
# In[43]:
print(train_generator.class_indices)
# In[44]:
imgs, labels = next(train_generator)
# In[45]:
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
# In[ ]:
history = model.fit_generator(
train_generator,
steps_per_epoch=train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_samples // batch_size,
shuffle=True
)
model.save('Covidx.h5')
print('Successful :-) --737--')