-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
842 lines (658 loc) · 35.1 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
import os
import copy
import torch
import numpy as np
from torch.nn import functional as F
import random
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation_utils import BeamSearchScorer
from utils import dict_to_cpu, clip_and_log
from config import Config
from abc import ABC, abstractmethod
import termcolor
from nltk.tokenize import word_tokenize
from utils import top_k_top_p_filtering
import models
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
class AbstractDM(ABC, torch.nn.Module):
def __init__(self, config: Config, plm=None, tokenizer=None):
super().__init__()
self.config = config
print("LM path:", self.config.ft_lm_path)
self.plm = plm or AutoModelForCausalLM.from_pretrained(self.config.ft_lm_path, local_files_only=True)
self.tokenizer = tokenizer or AutoTokenizer.from_pretrained(self.config.ft_lm_path, local_files_only=True)
self.no_grad_plm()
def no_grad_plm(self):
self.plm.eval()
def get_parameters(self):
params = list(self.policy.parameters())
return params
def init_hidden(self, n_rounds=1):
if self.config.adapter_type == 'rnn':
device = self.get_device()
return self.policy.init_hidden(device, n_rounds=n_rounds)
else:
return None
def get_device(self):
return next(self.plm.parameters()).device
def get_lm_head_weights(self):
dict_ = dict_to_cpu(self.plm.lm_head.state_dict())
return dict_
def set_weights(self, weights):
self.policy.load_state_dict(weights)
def print_dialogue(self, dialogue, colored=True, print_injection_info=True):
if colored:
colored = termcolor.colored
else:
colored = lambda x, _: x
results = []
utter = dialogue['sequences'][0]
acts = dialogue['acts'][0]
if print_injection_info:
injected_tokens = []
for index, _id in enumerate(acts):
if _id < self.config.vocab_size:
injected_tokens.append((index, _id))
injected_report = ""
for (index, tok_id) in injected_tokens:
if tok_id >= self.tokenizer.eos_token_id:
continue
tok = self.tokenizer.decode([tok_id]).strip()
injected_report += "{}: ({}, {}) ".format(index, tok, tok_id)
print(colored('[' + injected_report.strip() + ']', 'red'))
utter = utter.tolist()
try:
utter = utter[:utter.index(self.tokenizer.eos_token_id) + 1]
except:
pass
next_utterance = self.tokenizer.decode(utter)
next_utterance = next_utterance.strip().lower()
if next_utterance:
print(colored('PREDICT: {}'.format(next_utterance), 'green'))
results.append(next_utterance)
return results
def plm_gen(self, input_ids: torch.LongTensor,
max_length: int = 1024,
utter_length: int = 128,
**model_kwargs):
eos_token_id = pad_token_id = self.tokenizer.eos_token_id
sequence_lengths, unfinished_sequences, cur_len = self.plm._init_sequence_length_for_generation(
input_ids, max_length
)
seq_len = torch.zeros_like(unfinished_sequences)
start_len = cur_len
use_greedy_sample = 'greedy' in self.config.scheme
p_tokens = []
while (cur_len - start_len) < utter_length:
model_inputs = self.plm.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self.plm(**model_inputs)
lm_next_token_logits = outputs.logits[:, -1].detach() / self.config.temperature4plm
if not use_greedy_sample:
lm_next_token_logits = top_k_top_p_filtering(lm_next_token_logits,
top_k=self.config.top_k, top_p=self.config.top_p)
lm_dist = F.softmax(lm_next_token_logits, dim=-1)
if use_greedy_sample:
next_tokens = torch.argmax(lm_dist, dim=-1, keepdim=True)
else:
next_tokens = torch.multinomial(lm_dist, num_samples=1)
p_next_tokens = lm_dist.gather(1, next_tokens)
p_tokens.append(p_next_tokens)
next_tokens = next_tokens.squeeze(1)
next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences)
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
cur_len = cur_len + 1
sequence_lengths, unfinished_sequences = self.plm._update_seq_length_for_generation(
sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id
)
seq_len += unfinished_sequences
if unfinished_sequences.max() == 0:
break
model_kwargs = self.plm._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.plm.config.is_encoder_decoder
)
scores = torch.cat(p_tokens, dim=1)
input_ids = input_ids[:, start_len:]
return scores, input_ids, seq_len
def _cat_and_sample(self, dist1, dist2, dist=None, use_filter=True, use_greedy_sample=False):
if dist is None:
dist = torch.cat([dist1, dist2], dim=-1)
if not use_greedy_sample and use_filter:
dist = top_k_top_p_filtering(dist, is_probs=True, filter_value=0.0,
top_k=self.config.top_k, top_p=self.config.top_p)
if use_greedy_sample:
next_token = torch.argmax(dist, dim=-1, keepdim=True)
else:
next_token = torch.multinomial(dist, num_samples=1)
dist_ids = torch.div(next_token, self.config.vocab_size, rounding_mode='floor')
do_not_inject = torch.less(next_token, self.config.vocab_size)
p_token = dist.gather(1, next_token)
next_tokens = next_token % self.config.vocab_size
return next_tokens, p_token, do_not_inject, dist_ids
def get_inj_prob(self, inj_probs):
if not self.policy.training and self.config.fixed_inj_prob is not None:
_inj_probs = torch.zeros_like(inj_probs)
_inj_probs[:, 0] = 1 - self.config.fixed_inj_prob
_inj_probs[:, 1] = self.config.fixed_inj_prob
inj_probs = _inj_probs
return inj_probs
def _forward_stg_multi(self, plm_dist, inj_probs, calib_lm_dists, sample_scheme_dict):
inj_probs = self.get_inj_prob(inj_probs)
if sample_scheme_dict['use_cat'] or sample_scheme_dict['use_mix']:
lm_next_token_probs = plm_dist * inj_probs[:, 0, None]
calib_next_token_probs = []
for i, calib_lm_dist in enumerate(calib_lm_dists):
calib_next_token_probs.append(calib_lm_dist * inj_probs[:, i + 1, None])
calib_next_token_probs = torch.cat(calib_next_token_probs, dim=-1)
if sample_scheme_dict['use_mix']:
mixture = lm_next_token_probs + calib_next_token_probs
next_tokens, p_token, do_not_inject, dist_ids = \
self._cat_and_sample(None, None, dist=mixture, use_greedy_sample=False)
else:
next_tokens, p_token, do_not_inject, dist_ids = \
self._cat_and_sample(lm_next_token_probs, calib_next_token_probs, use_greedy_sample=False)
p_inj_act = torch.where(do_not_inject, inj_probs[:, 0, None], torch.gather(inj_probs, 1, dist_ids))
p_token = p_token / p_inj_act
else:
calib_next_token_probs = torch.cat(calib_lm_dists, dim=-1)
if sample_scheme_dict['use_max'] or sample_scheme_dict['use_greedy']:
inj_act = torch.argmax(inj_probs, dim=-1, keepdims=True)
else:
inj_act = torch.multinomial(inj_probs, num_samples=1)
do_not_inject = torch.eq(inj_act, 0)
_inj_act = torch.where(do_not_inject, 1, inj_act)
fr = (_inj_act - 1) * self.config.vocab_size
to = fr + self.config.vocab_size
calib_lm_dist = []
for i in range(len(fr)):
_fr = fr[i]
_to = to[i]
calib_lm_dist.append(calib_next_token_probs[i, _fr:_to])
calib_lm_dist = torch.stack(calib_lm_dist)
p_inj_act = inj_probs.gather(1, inj_act)
if sample_scheme_dict['use_greedy']:
lm_next_token = torch.argmax(plm_dist, dim=-1, keepdim=True)
calib_next_token = torch.argmax(calib_lm_dist, dim=-1, keepdim=True)
else:
lm_next_token = torch.multinomial(plm_dist, num_samples=1)
calib_next_token = torch.multinomial(calib_lm_dist, num_samples=1)
p_plm_token = plm_dist.gather(1, lm_next_token)
p_calib_token = calib_lm_dist.gather(1, calib_next_token)
next_tokens = torch.where(do_not_inject, lm_next_token, calib_next_token)
p_token = torch.where(do_not_inject, p_plm_token, p_calib_token)
injection_mask = torch.logical_not(do_not_inject)
p_plm_token = plm_dist.gather(1, next_tokens)
_p_actions = [p_inj_act.unsqueeze(1), p_token.unsqueeze(1),
p_plm_token.unsqueeze(1), inj_probs.unsqueeze(1)]
_p_actions = torch.cat(_p_actions, dim=-1)
return next_tokens, _p_actions, injection_mask, p_plm_token
def plm_forward(self, input_ids, **model_kwargs):
# prepare model inputs
model_inputs = self.plm.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self.plm(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=True,
)
plm_hidden_states = torch.cat(outputs.hidden_states[-self.config.nlm:], dim=-1)
plm_hidden_states = plm_hidden_states.detach()
plm_next_token_logits = outputs.logits[:, -1].detach()
plm_next_token_logits /= self.config.temperature4plm
return plm_hidden_states, plm_next_token_logits, outputs
def get_init_rnn_context(self, plm_hidden_states, prev_state):
if self.config.adapter_type == 'rnn':
init_plm_hidden_states = plm_hidden_states[:, :-1]
if self.config.is_stg:
prev_state = self.policy.get_init_ctx(init_plm_hidden_states, prev_state)
else:
prev_state = self.policy.get_init_ctx(init_plm_hidden_states, prev_state)
return prev_state
def _forward_naive_injector(self, plm_dist, calib_dist, sample_scheme_dict, calib_tokens=None, plm_tokens=None):
if calib_tokens is None:
if sample_scheme_dict['use_greedy']:
calib_tokens = torch.argmax(calib_dist, dim=-1, keepdim=True)
else:
calib_tokens = torch.multinomial(calib_dist, num_samples=1)
if plm_tokens is None:
if sample_scheme_dict['use_greedy']:
plm_tokens = torch.argmax(plm_dist, dim=-1, keepdim=True)
else:
plm_tokens = torch.multinomial(plm_dist, num_samples=1)
p_plm_tokens = plm_dist.gather(1, plm_tokens)
p_calib_tokens = calib_dist.gather(1, calib_tokens)
if self.config.inj_scheme == 'max':
do_not_inject = p_calib_tokens > p_calib_tokens
next_tokens = torch.where(do_not_inject, plm_tokens, calib_tokens)
p_tokens = torch.where(do_not_inject, p_plm_tokens, p_calib_tokens)
elif self.config.inj_scheme == 'mix':
if sample_scheme_dict['use_cat']:
next_tokens, p_tokens, do_not_inject, _ = \
self._cat_and_sample(plm_dist, calib_dist, dist=None, use_filter=not self.policy.training)
else:
mixture = (plm_dist + calib_dist) / 2
next_tokens, p_tokens, do_not_inject, _ = \
self._cat_and_sample(None, None, dist=mixture, use_filter=not self.policy.training,
use_greedy_sample=sample_scheme_dict['use_greedy'])
elif self.config.inj_scheme == 'random':
do_not_inject = random.choices([True, False], k=len(calib_tokens))
do_not_inject = torch.BoolTensor(do_not_inject).to(calib_tokens.device).unsqueeze(-1)
next_tokens = torch.where(do_not_inject, plm_tokens, calib_tokens)
p_tokens = torch.where(do_not_inject, p_plm_tokens, p_calib_tokens)
return next_tokens, p_tokens, do_not_inject
def forward_step(self,
plm_last_state,
prev_state,
plm_next_token_logits,
sample_scheme_dict):
extra_stat_dict = dict(inj_prob=None)
if self.config.is_stg:
use_filter = not sample_scheme_dict['use_greedy']
use_filter = use_filter and (sample_scheme_dict['use_cat'] or sample_scheme_dict['use_max'])
if use_filter:
plm_next_token_logits = \
top_k_top_p_filtering(plm_next_token_logits, top_k=self.config.top_k, top_p=self.config.top_p)
plm_dist = F.softmax(plm_next_token_logits, dim=-1)
input_critic, (inj_probs, calib_lm_dist), prev_state = self.policy.sample(plm_last_state, prev_state,
use_filter=use_filter)
next_tokens, p_action_items, injection_mask, p_plm_tokens = \
self._forward_stg_multi(plm_dist, inj_probs, calib_lm_dist, sample_scheme_dict)
extra_stat_dict['inj_prob'] = inj_probs[:, 1, None]
else:
input_critic, calib_tokens, calib_dist, prev_state, calib_logtis = \
self.policy.sample(plm_last_state, prev_state, return_logits=True,
use_greedy_sample=sample_scheme_dict['use_greedy'])
if self.config.inj_scheme is None:
plm_dist = F.softmax(plm_next_token_logits, dim=-1)
next_tokens = calib_tokens
injection_mask = torch.ones_like(next_tokens, dtype=torch.bool)
p_plm_tokens = plm_dist.gather(1, next_tokens)
p_action_items = p_plm_tokens.unsqueeze(1)
else:
plm_dist = F.softmax(plm_next_token_logits, dim=-1)
next_tokens, p_tokens, do_not_inject = \
self._forward_naive_injector(plm_dist, calib_dist, sample_scheme_dict, calib_tokens=calib_tokens)
injection_mask = torch.logical_not(do_not_inject)
p_plm_tokens = plm_dist.gather(1, next_tokens)
if self.config.is_mle:
p_action_items = calib_logtis.unsqueeze(1)
else:
p_action_items = p_tokens.unsqueeze(1)
return prev_state, p_plm_tokens, next_tokens, p_action_items, injection_mask, input_critic, extra_stat_dict
def _forward(self, input_ids: torch.LongTensor,
prev_state: torch.FloatTensor,
max_length: int = 1024,
utter_length: int = 128,
**model_kwargs):
eos_token_id = pad_token_id = self.tokenizer.eos_token_id
sequence_lengths, unfinished_sequences, cur_len = self.plm._init_sequence_length_for_generation(
input_ids, max_length
)
observations = []
injection_masks = []
p_plm_tokens = []
prev_states = []
inputs_critic = []
extra_stats_dict = dict(inj_probs=list(), entropies=list())
seq_len = torch.zeros_like(unfinished_sequences)
start_len = cur_len
has_started = False
# sample scheme for STI
sample_scheme_dict = {
'use_greedy': not self.policy.training and 'greedy' in self.config.scheme,
'use_max': not self.policy.training and 'max' in self.config.scheme,
'use_cat': not self.policy.training and 'cat' in self.config.scheme,
'use_mix': not self.policy.training and 'mix' in self.config.scheme
}
# auto-regressive generation
while (cur_len - start_len) < utter_length:
plm_hidden_states, plm_next_token_logits, outputs = self.plm_forward(input_ids, **model_kwargs)
plm_last_state = plm_hidden_states[:, -1]
if not has_started:
prev_state = self.get_init_rnn_context(plm_hidden_states, prev_state)
has_started = True
prev_state, p_plm_token, next_tokens, p_action_items, injection_mask, input_critic, extra_stat_dict = \
self.forward_step(plm_last_state, prev_state, plm_next_token_logits, sample_scheme_dict)
observations.append(p_action_items)
inputs_critic.append(input_critic.unsqueeze(1))
prev_states.append(prev_state)
p_plm_tokens.append(p_plm_token)
injection_masks.append(injection_mask)
extra_stats_dict['inj_probs'].append(extra_stat_dict['inj_prob']) if not extra_stat_dict['inj_prob'] is None else None
next_tokens = next_tokens.squeeze(1)
next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences)
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
cur_len = cur_len + 1
# update sequence length
sequence_lengths, unfinished_sequences = self.plm._update_seq_length_for_generation(
sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id
)
seq_len += unfinished_sequences
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sequences.max() == 0:
break
# update model kwargs
model_kwargs = self.plm._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.plm.config.is_encoder_decoder
)
if len(observations) > 0:
observations = torch.cat(observations, dim=1)
injection_masks = torch.cat(injection_masks, dim=-1)
p_plm_tokens = torch.cat(p_plm_tokens, dim=1)
inputs_critic = torch.cat(inputs_critic, dim=1)
if self.config.is_stg:
extra_stats_dict['inj_probs'] = torch.cat(extra_stats_dict['inj_probs'], dim=1)
if self.config.is_mle:
critic_value = None
else:
critic_value = self.policy.critic(inputs_critic).squeeze(-1)
return input_ids, prev_states, observations, injection_masks, p_plm_tokens, seq_len, critic_value, extra_stats_dict
def forward(self, inputs, prev_state=None,
max_length=1024,
utter_length=128, is_mle=False):
self.no_grad_plm()
if prev_state is None:
prev_state = self.init_hidden(len(inputs))
if is_mle:
return self.policy(inputs, prev_state)
else:
return self._forward(inputs, prev_state, maxin_length=max_length, utter_length=utter_length)
def beam_gen(self, input_ids, num_beams=5,
max_length=1024, do_early_stopping=True, **model_kwargs):
with torch.no_grad():
batch_size = input_ids.shape[0]
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
max_length=max_length,
num_beams=num_beams,
do_early_stopping=do_early_stopping,
device=self.plm.device
)
input_ids, model_kwargs = self.plm._expand_inputs_for_generation(
input_ids, expand_size=num_beams,
is_encoder_decoder=self.plm.config.is_encoder_decoder, **model_kwargs
)
return self.beam_search(input_ids, beam_scorer,
max_length=max_length, **model_kwargs)
def beam_search(self, input_ids, beam_scorer, max_length=1024, **model_kwargs):
eos_token_id = pad_token_id = self.tokenizer.eos_token_id
batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
has_started = False
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
prev_state = self.init_hidden(len(input_ids))
injection_masks = []
is_stg = self.config.is_stg or self.config.inj_scheme is not None
while cur_len < max_length:
plm_hidden_states, plm_next_token_logits, outputs = self.plm_forward(input_ids, **model_kwargs)
plm_last_state = plm_hidden_states[:, -1]
if not has_started:
prev_state = self.get_init_rnn_context(plm_hidden_states, prev_state)
has_started = True
if is_stg:
next_token_scores, prev_state, plm_dist, calib_dist, prior = self.beam_step(plm_last_state, prev_state, plm_next_token_logits)
else:
next_token_scores, prev_state = self.beam_step(plm_last_state, prev_state, plm_next_token_logits)
next_token_scores = next_token_scores + beam_scores[:, None]
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
)
next_indices = next_tokens // vocab_size
next_tokens = next_tokens % vocab_size
# stateless
beam_outputs = beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
if is_stg:
p_token_plm = plm_dist.gather(1, beam_next_tokens[:, None])
p_token_calib = calib_dist.gather(1, beam_next_tokens[:, None])
if prior is not None:
injection_mask = torch.where(prior[:, 0, None] > prior[:, 1, None],
torch.zeros_like(p_token_plm),
torch.ones_like(p_token_calib))
else:
injection_mask = torch.where(p_token_plm > p_token_calib,
torch.zeros_like(p_token_plm),
torch.ones_like(p_token_calib))
else:
injection_mask = torch.zeros_like(beam_next_tokens).unsqueeze(-1)
injection_masks.append(injection_mask)
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
cur_len = cur_len + 1
model_kwargs = self.plm._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.plm.config.is_encoder_decoder
)
if model_kwargs["past"] is not None:
model_kwargs["past"] = self.plm._reorder_cache(model_kwargs["past"], beam_idx)
if beam_scorer.is_done:
break
sequence_outputs = beam_scorer.finalize(
input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id
)
idx = torch.argmax(beam_scores)
injection_masks = torch.cat(injection_masks, -1)
return sequence_outputs["sequences"], sequence_outputs["sequence_scores"], injection_masks[idx]
class DM_STG(AbstractDM):
def __init__(self, config: Config):
super(DM_STG, self).__init__(config)
if config.adapter_type == 'rnn':
self.policy = models.MA_PGN_RNN_STG(config)
else:
self.policy = models.PGN(config)
self.policy.load_lm_head(copy.deepcopy(self.get_lm_head_weights()))
self.policy.train()
def beam_step(self, plm_last_state, prev_state, plm_next_token_logits):
plm_dist = F.softmax(plm_next_token_logits, dim=-1)
input_critic, (inj_probs, calib_lm_dists), prev_state = self.policy.sample(plm_last_state, prev_state,
use_filter=False)
inj_probs = self.get_inj_prob(inj_probs)
plm_dist = plm_dist * inj_probs[:, 0, None]
calib_dist = 0
for i, calib_lm_dist in enumerate(calib_lm_dists):
calib_dist += calib_lm_dist * inj_probs[:, i + 1, None]
return clip_and_log(plm_dist + calib_dist), prev_state, plm_dist, calib_dist, None
class DM_FTG(AbstractDM):
def __init__(self, config: Config):
super(DM_FTG, self).__init__(config)
if config.adapter_type == 'rnn':
self.policy = models.PGN_FTI_RNN(config)
else:
self.policy = models.PGN_FTI(config)
self.policy.load_lm_head(copy.deepcopy(self.get_lm_head_weights()))
self.policy.train()
def beam_step(self, plm_last_state, prev_state, plm_next_token_logits):
calib_next_token_logits, _, prev_state = self.policy(plm_last_state, state_t=prev_state)
if self.config.inj_scheme is None:
_, _, calib_dist, prev_state = \
self.policy.sample(plm_last_state, prev_state, return_logits=False, use_greedy_sample=False)
next_token_scores = F.log_softmax(calib_next_token_logits, dim=-1)
return next_token_scores, prev_state
else:
plm_dist = F.softmax(plm_next_token_logits, dim=-1)
calib_dist = F.softmax(calib_next_token_logits, dim=-1)
if self.config.inj_scheme == 'max':
dist = torch.maximum(plm_dist, calib_dist)
elif self.config.inj_scheme == 'mix':
dist = (plm_dist + calib_dist)/2
elif self.config.inj_scheme == 'random':
vocab_size = plm_next_token_logits.shape[-1]
use_plm = random.choices([True, False], k=vocab_size)
use_plm = torch.BoolTensor(use_plm).to(plm_next_token_logits.device)
dist = torch.where(use_plm, plm_dist, calib_dist)
next_token_scores = clip_and_log(dist)
return next_token_scores, prev_state, plm_dist, calib_dist, None
class PLM_wrapper(AbstractDM):
def __init__(self, config: Config, plm=None, tokenizer=None):
super(PLM_wrapper, self).__init__(config, plm=plm, tokenizer=tokenizer)
def beam_step(self, plm_last_state, prev_state, plm_next_token_logits):
return F.log_softmax(plm_next_token_logits, dim=-1), prev_state
class DialogueSampler:
def __init__(self,
dm: AbstractDM,
config: Config,
mode='train',
args=None):
assert mode in ['train', 'test']
self.dm = dm
self.config = config
self.mode = mode
self.loader = None
self.tokenizer = dm.module.tokenizer
if mode == 'train':
if self.config.exp == 'tod':
from data_loader import FsWozLoader
from tod.fswoz.utils.loader.GentScorer import GentScorer
domain = self.config.domain if self.config.target_domain is None else self.config.target_domain
self.loader = FsWozLoader(self.tokenizer, domain, mode='train', args=args)
self.valid_loader = FsWozLoader(self.tokenizer, domain, mode='valid', args=args)
if args.use_train_score:
self.train_valid_loader = FsWozLoader(self.tokenizer, domain, mode='train_valid',
args=args)
self.scorer = GentScorer(os.path.join(CUR_PATH, 'tod/fswoz/utils/resource/detect.pair'))
self.score_func = self.fswoz_reward_func
elif self.config.exp == 'summ':
from data_loader import SummLoader
from rouge_score import rouge_scorer
self.loader = SummLoader(self.tokenizer, domain=self.config.domain, mode='train',
use_eos=self.config.use_eos, args=args)
self.valid_loader = SummLoader(self.tokenizer, domain=self.config.domain, mode='valid',
use_eos=self.config.use_eos, args=args)
if args.use_train_score:
self.train_valid_loader = SummLoader(self.tokenizer, domain=self.config.domain, mode='train_valid',
use_eos=self.config.use_eos, args=args, data=self.loader.dataset.data)
self.metrics = ['rougeL']
self.scorer = rouge_scorer.RougeScorer(self.metrics, use_stemmer=True)
self.score_func = self.summ_reward_func
elif self.config.exp == 'qa':
from data_loader import QALoader
from qa.src.Evaluation.bleu.bleu import Bleu
from qa.src.Evaluation.rouge.rouge import Rouge
self.loader = QALoader(self.tokenizer, domain=self.config.domain, mode='train',
use_eos=self.config.use_eos, args=args)
self.valid_loader = QALoader(self.tokenizer, domain=self.config.domain, mode='valid',
use_eos=self.config.use_eos, args=args)
if args.use_train_score:
self.train_valid_loader = QALoader(self.tokenizer, domain=self.config.domain, mode='train_valid',
use_eos=self.config.use_eos, args=args, data=self.loader.dataset.data)
self.scorer = [Bleu(), Rouge()]
self.score_func = self.qa_reward_func
def get_batch(self, n_rounds, loader=None):
if loader is None:
loader = self.loader
input, output, aux_data = loader.get_batch()
input = input.repeat(n_rounds, 1)
return input, output, aux_data
def sample(self, batch=None, n_rounds=1,
utter_length=128, max_length=1024,
is_valid=False):
if batch is None:
loader = self.loader if not is_valid else self.valid_loader
batch = self.get_batch(n_rounds, loader)
input_tokens, _, aux_data = batch
input_tokens = input_tokens.cuda()
init_len = input_tokens.shape[-1]
sequences, prev_state, obs, injection_masks, p_plm_tokens, seq_length, ext_values, extra_stats_dict = \
self.dm(input_tokens, prev_state=None, max_length=max_length, utter_length=utter_length)
output_tokens = sequences[:, init_len:]
acts = torch.ones_like(output_tokens) * self.tokenizer.vocab_size
acts = (torch.logical_not(injection_masks) * acts) + (injection_masks * output_tokens)
output_sents = output_tokens.detach().cpu().numpy()
results = {
'sequences': output_sents,
'acts': acts,
'obs': obs,
'injection_masks': injection_masks,
'seq_lengths': seq_length,
'log_p_plm_tokens': clip_and_log(p_plm_tokens),
'inj_probs': extra_stats_dict['inj_probs'],
'ext_values': ext_values,
}
if self.mode == 'train':
results['ext_rewards'] = self.score_func(output_sents, aux_data, is_valid=is_valid),
return results
def _tokenize(self, text):
n_eos_token = len(self.tokenizer.eos_token)
last_token = text[-n_eos_token:]
if self.config.use_eos and last_token == self.tokenizer.eos_token:
text = text[:-n_eos_token]
text = ' '.join(word_tokenize(text)) + ' ' + last_token
else:
text = ' '.join(word_tokenize(text))
return text
def qa_reward_func(self, outputs, aux_data, is_valid=False):
(_, texts) = aux_data
gt = self._tokenize(texts['answer'][0])
def calc_score(gt, gen):
gts, res = {'0': [gt]}, {'0': [gen]}
score = 0.0
for scorer in self.scorer:
_score, _ = scorer.compute_score(gts, res)
score += np.mean(_score)
score /= len(self.scorer)
return score
scores = []
for i, encoded in enumerate(outputs):
encoded = encoded.tolist()
try:
encoded = encoded[:encoded.index(self.tokenizer.eos_token_id)+1]
except:
pass
gen = self.tokenizer.decode(encoded, skip_special_tokens=not self.config.use_eos)
gen = gen.strip().lower()
gen = self._tokenize(gen)
score = calc_score(gt, gen)
scores.append(score)
reward = scores
return reward
def summ_reward_func(self, outputs, aux_data, is_valid=False):
(gt, _) = aux_data
gt = gt[0].strip().lower()
gt = self._tokenize(gt)
scores = []
for i, encoded in enumerate(outputs):
gen = self.tokenizer.decode(encoded, skip_special_tokens=not self.config.use_eos)
gen = gen.strip().lower()
gen = self._tokenize(gen)
# print("GT:", gt)
# print("GEN:", gen)
# print("-" * 50)
score = self.scorer.score(gt, gen)
score = [score[metric].fmeasure for metric in self.metrics]
scores.append(np.mean(score))
reward = scores
return reward
def fswoz_reward_func(self, outputs, aux_data, is_valid=False):
assert len(outputs) == 1
# outputs = outputs[0]
a, felements, ref_sent, dact, _ = aux_data
gens = []
dact = self.loader.util.preproc_dact(dact)
ref_sent = ' '.join(word_tokenize(ref_sent))
ref_sent = self.loader.util.delexicalise(ref_sent, dact)
# print("DACT:", dact)
# print("REF:", ref_sent)
for i, encoded in enumerate(outputs):
gen_str = self.tokenizer.decode(encoded, skip_special_tokens=True)
gen_str = gen_str.strip().lower()
gen_str = ' '.join(word_tokenize(gen_str))
gen_str = gen_str.replace('watts','watt -s').replace('televisions','television -s').replace('ports', 'port -s').replace('includes', 'include -s').replace('restaurants','restaurant -s').replace('kids','kid -s').replace('childs','child -s').replace('prices','price -s').replace('range','range -s').\
replace('laptops','laptop -s').replace('familys','family -s').replace('specifications','specification -s').replace('ratings','rating -s').replace('products','product -s').\
replace('constraints','constraint -s').replace('drives','drive -s').replace('dimensions','dimension -s')
gen_str = self.loader.util.delexicalise(gen_str, dact)
# print("GEN:",gen_str)
gens.append(gen_str)
reward = [self.scorer.scoreSBLEU([[[gen], [ref_sent]]]) for gen in gens]
return reward