-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
329 lines (256 loc) · 8.99 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import random
import os
import torch
import numpy as np
GPU_USABLE = torch.cuda.is_available()
GPT_DIM_TABLE = {
'small': 768,
'medium': 1024,
'large': 1280
}
MODEL_TABLE = {
'dialogpt': 'microsoft/DialoGPT-{}',
'gpt2': 'gpt2-{}'
}
class Config:
def __init__(self):
self.exp = 'summ' # ['tod', 'summ', 'qa']
self.domain = 'CNN' # ['hotel', 'restaurant', 'tv', 'laptop'], ['CNN']
self.target_domain = None
self.mode = 'stg'
self.model_name = 'gpt2' # ['dialogpt', 'gpt2']
self.gpt_size = 'medium' # ['small', 'medium', 'large', 'xl']
self.min_turn = 1
self.max_turn = 1
# for optimizer
self.lr = 0.00025
self.alpha = 0.95
self.eps = 0.01
self.nlm = 1
# train
self.gamma = 1
self.print_freq = 50
self.save_record_freq = 100
# for test
self.top_k = 0
self.top_p = 0.9
self.temperature4plm = 1.0
self.temperature4calib = 1.0
self.max_utter_len = None
self.vocab_size = None
self.lm_dim = None
self.num_actions = None
self.results_path = None
self.ft_lm_path = None
self.use_eos = True
self.seed = 9
self.init()
def __getitem__(self, item):
return self.__dict__[item]
def __setitem__(self, key, val):
self.__dict__[key] = val
def init(self):
if self.exp == 'summ':
self.max_utter_len = 105
self.vocab_size = 50259
elif self.exp == 'tod':
self.max_utter_len = 80
self.vocab_size = 50257
elif self.exp in ['qa']:
self.max_utter_len = 95
self.vocab_size = 50258
self.init_dir()
self.set_gpt_size(self.gpt_size)
self.num_actions = self.vocab_size
def init_dir(self):
root_dir = os.path.dirname(os.path.realpath(__file__))
self.results_path = os.path.join(root_dir, self.exp)
self.ft_lm_path = os.path.join(self.results_path, 'ft')
self.model_path = os.path.join(self.results_path, self.domain)
if self.exp in ['qa', 'summ']:
domain = self.domain
if self.target_domain is not None:
domain = self.target_domain
if self.use_eos:
self.ft_lm_path = os.path.join(self.ft_lm_path, f'{domain}_{self.seed}_eos')
else:
self.ft_lm_path = os.path.join(self.ft_lm_path, f'{domain}_{self.seed}')
else:
self.ft_lm_path = os.path.join(self.ft_lm_path, self.domain)
os.makedirs(self.results_path, exist_ok=True)
os.makedirs(self.ft_lm_path, exist_ok=True)
os.makedirs(self.model_path, exist_ok=True)
def get_model_name(self):
return MODEL_TABLE[self.model_name].format(self.gpt_size)
def set_gpt_size(self, size):
self.gpt_size = size
self.lm_dim = GPT_DIM_TABLE[self.gpt_size]
def sample_n_turn(self):
if self.exp == 'tod':
n_turn = 1
else:
n_turn = random.randint(self.min_turn, self.max_turn)
return n_turn
def get_experiment_name(self):
name = self._get_name()
if self.exp == 'tod':
base_domain = ""
domain = self.domain
if self.target_domain is not None:
base_domain = "base-{}_".format(self.domain)
domain = self.target_domain
exp_domain = "{}-{}_".format(self.exp, domain) + base_domain
name = exp_domain + name
else:
if self.target_domain is None:
name = "{}-{}_".format(self.exp, self.domain) + name
else:
name = "{}-{}_td-{}_".format(self.exp, self.domain, self.target_domain) + name
if not self.mode.startswith('stg'):
name = "{}_".format(self.mode.upper()) + name
return name
class Config_PG(Config):
def __init__(self):
super(Config_PG, self).__init__()
self.learner = 'pg'
self.adapter_type = 'rnn' # ['mlp', 'rnn']
self.rnn_type = 'lstm' # ['lstm', 'gru']
self.algorithm = 'ac' # ['ac', 'ppo']
self.num_layers = 2
self.scheme = 'sample'
self.baseline = 'critic'
self.score_alpha = 1
self.pretrain_epochs = 0
self.gamma = 1
self.num_rounds = 1
# for PPO algorithm
self.eps_clip = 0.2
self.n_agent = 1
self.plm_gen = False
self.interm_layer = False
self.det = True
self.inj_scheme = None
self.nlm = 1
self.do_valid_ppl = False
self.do_valid_gen = True
self.save_freq = 5
self.step = 0 # for exp_decay
self.scheduler = None
self.int_scale = 0.1
self.ext_scale = 1
# for eval
self.fixed_inj_prob = None
def set_exp(self, exp,
dim=None,
gamma=None,
score_alpha=None,
scheme=None,
lr=None,
wd=None,
pretrain_epochs=None,
num_layers=None,
num_batch=None):
self.exp = exp
self.dim = dim or 512
self.num_layers = num_layers or self.num_layers
self.wd = wd or 1e-5
self.lr = lr or 1e-5
self.scheme = scheme or self.scheme # decoding scheme during in validation
self.gamma = gamma if gamma is not None else self.gamma
self.score_alpha = score_alpha if gamma is not None else self.score_alpha
self.pretrain_epochs = pretrain_epochs if pretrain_epochs is not None else self.pretrain_epochs
if self.exp == 'qa':
self.print_freq = 1
self.valid_freq = 64
self.gen_margin = 5
epochs = {
'005': 50,
'01': 40,
'05': 20,
'1': 10,
'2': 5
}
self.num_epochs = epochs[self.domain] * 2
self.num_batch = num_batch if num_batch is not None else 16
self.pretrain_num_batch = 128
self.fixed_inj_prob = None
self.interm_layer = True
elif self.exp == 'summ':
self.print_freq = 1
# self.valid_freq = 100
self.valid_freq = 64
self.gen_margin = 10
epochs = {
'CNN001': 25,
'CNN003': 20,
'CNN01': 15,
'CNN05': 8,
'CNN': 4,
'CNN2': 2
}
self.num_epochs = epochs[self.domain]
self.num_batch = num_batch if num_batch is not None else 16
self.pretrain_num_batch = 64
self.fixed_inj_prob = None
self.interm_layer = True
elif self.exp == 'tod':
self.print_freq = 1
self.valid_freq = 5
self.gen_margin = 5
# self.num_epochs = 30
self.num_epochs = 60 # overfitting 체크용
self.num_batch = num_batch if num_batch is not None else 10
self.pretrain_num_batch = 10
self.fixed_inj_prob = None
self.interm_layer = True
print(f'MODE:{self.mode}')
@property
def is_stg(self):
return 'stg' in self.mode
@property
def is_ftg(self):
return 'ftg' in self.mode
@property
def is_mle(self):
return self.mode.startswith('mle')
@property
def use_greedy_baseline(self):
return 'greedy' == self.baseline
def _get_name(self):
name = f"SEED-{self.seed}_"
learner_type = self.adapter_type
if self.adapter_type == 'rnn':
learner_type = self.rnn_type
tmpl = "{}-{}_{}-{}_dim-{}_bs-{}_nr-{}_lr-{}"
name += tmpl.format(self.learner, learner_type, self.model_name, self.gpt_size, self.dim,
self.num_batch, self.num_rounds, self.lr)
if self.adapter_type == 'rnn':
name += f"_nlayer-{self.num_layers}"
if not self.mode.startswith('mle'):
name += f"_algo-{self.algorithm}"
if self.plm_gen:
name += "_GLM"
if self.pretrain_epochs > 0:
name += f"_PRE-{self.pretrain_epochs}"
if self.gamma < 1:
name += f"_gamma-{self.gamma}"
if self.baseline == 'greedy':
name += f'greedyBL'
if self.scheduler is not None:
name += f"_LRS-{self.scheduler}"
if self.use_eos:
name += "_EOS"
if self.nlm > 1:
name += f"_nlm-{self.nlm}"
if self.is_stg:
name += f"_scheme-{self.scheme}"
name += f"_temp-{self.temperature4plm}"
if self.interm_layer:
name += "_interm"
else:
if self.inj_scheme is not None:
name += f"_inj-{self.inj_scheme}"
return name
if __name__ == "__main__":
config = Config()
print(config.get_experiment_name())